Author: William F. Martin
Publisher: CRC Press
ISBN: 1003859526
Category : Science
Languages : en
Pages : 249
Book Description
This is a textbook covering the transition from energy releasing reactions on the early Earth to energy releasing reactions that fueled growth in the first microbial cells. It is for teachers and college students with an interest in microbiology, geosciences, biochemistry, evolution, or all of the above. The scope of the book is a quantum departure from existing “origin of life” books in that it starts with basic chemistry and links energy-releasing geochemical processes to the reactions of microbial metabolism. The text reaches across disciplines, providing students of the geosciences an origins/biology interface and bringing a geochemistry/origins interface to students of microbiology and evolution. Beginning with physical chemistry and transitioning across metabolic networks into microbiology, the timeline documents chemical events and organizational states in hydrothermal vents – the only environments known that bridge the gap between spontaneous chemical reactions that we can still observe in nature today and the physiology of microbes that live from H2, CO2, ammonia, phosphorus, inorganic salts and water. Life is a chemical reaction. What it is and how it arose are two sides of the same coin. Key Features Provides clear connections between geochemical reactions and microbial metabolism Focuses on chemical mechanisms and transition metals Richly illustrated with color figures explaining reactions and processes Covers the origin of the Earth, the origin of metabolism, the origin of protein synthesis and genetic information as well as the escape into the wild of the first free-living cells: Bacteria and Archaea
The Geochemical Origin of Microbes
Author: William F. Martin
Publisher: CRC Press
ISBN: 1003859526
Category : Science
Languages : en
Pages : 249
Book Description
This is a textbook covering the transition from energy releasing reactions on the early Earth to energy releasing reactions that fueled growth in the first microbial cells. It is for teachers and college students with an interest in microbiology, geosciences, biochemistry, evolution, or all of the above. The scope of the book is a quantum departure from existing “origin of life” books in that it starts with basic chemistry and links energy-releasing geochemical processes to the reactions of microbial metabolism. The text reaches across disciplines, providing students of the geosciences an origins/biology interface and bringing a geochemistry/origins interface to students of microbiology and evolution. Beginning with physical chemistry and transitioning across metabolic networks into microbiology, the timeline documents chemical events and organizational states in hydrothermal vents – the only environments known that bridge the gap between spontaneous chemical reactions that we can still observe in nature today and the physiology of microbes that live from H2, CO2, ammonia, phosphorus, inorganic salts and water. Life is a chemical reaction. What it is and how it arose are two sides of the same coin. Key Features Provides clear connections between geochemical reactions and microbial metabolism Focuses on chemical mechanisms and transition metals Richly illustrated with color figures explaining reactions and processes Covers the origin of the Earth, the origin of metabolism, the origin of protein synthesis and genetic information as well as the escape into the wild of the first free-living cells: Bacteria and Archaea
Publisher: CRC Press
ISBN: 1003859526
Category : Science
Languages : en
Pages : 249
Book Description
This is a textbook covering the transition from energy releasing reactions on the early Earth to energy releasing reactions that fueled growth in the first microbial cells. It is for teachers and college students with an interest in microbiology, geosciences, biochemistry, evolution, or all of the above. The scope of the book is a quantum departure from existing “origin of life” books in that it starts with basic chemistry and links energy-releasing geochemical processes to the reactions of microbial metabolism. The text reaches across disciplines, providing students of the geosciences an origins/biology interface and bringing a geochemistry/origins interface to students of microbiology and evolution. Beginning with physical chemistry and transitioning across metabolic networks into microbiology, the timeline documents chemical events and organizational states in hydrothermal vents – the only environments known that bridge the gap between spontaneous chemical reactions that we can still observe in nature today and the physiology of microbes that live from H2, CO2, ammonia, phosphorus, inorganic salts and water. Life is a chemical reaction. What it is and how it arose are two sides of the same coin. Key Features Provides clear connections between geochemical reactions and microbial metabolism Focuses on chemical mechanisms and transition metals Richly illustrated with color figures explaining reactions and processes Covers the origin of the Earth, the origin of metabolism, the origin of protein synthesis and genetic information as well as the escape into the wild of the first free-living cells: Bacteria and Archaea
Links Between Geological Processes, Microbial Activities & Evolution of Life
Author: Yildirim Dilek
Publisher: Springer Science & Business Media
ISBN: 1402083068
Category : Science
Languages : en
Pages : 359
Book Description
Microbial systems in extreme environments and in the deep biosphere may be analogous to potential life on other planetary bodies and hence may be used to investigate the possibilities of extraterrestrial life. This book examines the mode and nature of links between geological processes and microbial activities and their significance for the origin and evolution of life on the Earth and possibly on other planets. This is a truly interdisciplinary science with societal relevance.
Publisher: Springer Science & Business Media
ISBN: 1402083068
Category : Science
Languages : en
Pages : 359
Book Description
Microbial systems in extreme environments and in the deep biosphere may be analogous to potential life on other planetary bodies and hence may be used to investigate the possibilities of extraterrestrial life. This book examines the mode and nature of links between geological processes and microbial activities and their significance for the origin and evolution of life on the Earth and possibly on other planets. This is a truly interdisciplinary science with societal relevance.
Geomicrobiology
Author: Jillian F. Banfield
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 1501509241
Category : Science
Languages : en
Pages : 464
Book Description
Volume 35 of Reviews in Mineralogy defines and explore the topic of geomicrobiology. It is organized so as to first introduce the nature, diversity, and metabolic impact of microorganisms and the types of solid phases they interact with. This is followed by a discussion of processes that occur at cell surfaces, interfaces between microbes and minerals, and within cells, and the resulting mineral precipitation, dissolution, and changes in aqueous geochemistry. The volume concludes with a discussion of the carbon cycle over geologic time. Basis for this volume was the Short Course on Geomicrobiology presented by the Mineralogical Society of America on October 18 and 19, 1997, at the Alta Peruvian Lodge in Alta, Utah.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 1501509241
Category : Science
Languages : en
Pages : 464
Book Description
Volume 35 of Reviews in Mineralogy defines and explore the topic of geomicrobiology. It is organized so as to first introduce the nature, diversity, and metabolic impact of microorganisms and the types of solid phases they interact with. This is followed by a discussion of processes that occur at cell surfaces, interfaces between microbes and minerals, and within cells, and the resulting mineral precipitation, dissolution, and changes in aqueous geochemistry. The volume concludes with a discussion of the carbon cycle over geologic time. Basis for this volume was the Short Course on Geomicrobiology presented by the Mineralogical Society of America on October 18 and 19, 1997, at the Alta Peruvian Lodge in Alta, Utah.
The Chemistry of Microbiomes
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309458390
Category : Science
Languages : en
Pages : 133
Book Description
The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.
Publisher: National Academies Press
ISBN: 0309458390
Category : Science
Languages : en
Pages : 133
Book Description
The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.
The Quest for a Universal Theory of Life
Author: Carol E. Cleland
Publisher: Cambridge University Press
ISBN: 052187324X
Category : Science
Languages : en
Pages : 261
Book Description
Explores fundamental philosophical and scientific questions about the nature of life, particularly in relation to the search for extraterrestrial life.
Publisher: Cambridge University Press
ISBN: 052187324X
Category : Science
Languages : en
Pages : 261
Book Description
Explores fundamental philosophical and scientific questions about the nature of life, particularly in relation to the search for extraterrestrial life.
Fundamentals of Geobiology
Author: Andrew H. Knoll
Publisher: John Wiley & Sons
ISBN: 1118280881
Category : Science
Languages : en
Pages : 876
Book Description
2012 PROSE Award, Earth Science: Honorable Mention For more than fifty years scientists have been concerned with the interrelationships of Earth and life. Over the past decade, however, geobiology, the name given to this interdisciplinary endeavour, has emerged as an exciting and rapidly expanding field, fuelled by advances in molecular phylogeny, a new microbial ecology made possible by the molecular revolution, increasingly sophisticated new techniques for imaging and determining chemical compositions of solids on nanometer scales, the development of non-traditional stable isotope analyses, Earth systems science and Earth system history, and accelerating exploration of other planets within and beyond our solar system. Geobiology has many faces: there is the microbial weathering of minerals, bacterial and skeletal biomineralization, the roles of autotrophic and heterotrophic metabolisms in elemental cycling, the redox history in the oceans and its relationship to evolution and the origin of life itself.. This book is the first to set out a coherent set of principles that underpin geobiology, and will act as a foundational text that will speed the dissemination of those principles. The chapters have been carefully chosen to provide intellectually rich but concise summaries of key topics, and each has been written by one or more of the leading scientists in that field.. Fundamentals of Geobiology is aimed at advanced undergraduates and graduates in the Earth and biological sciences, and to the growing number of scientists worldwide who have an interest in this burgeoning new discipline. Additional resources for this book can be found at: http://www.wiley.com/go/knoll/geobiology.
Publisher: John Wiley & Sons
ISBN: 1118280881
Category : Science
Languages : en
Pages : 876
Book Description
2012 PROSE Award, Earth Science: Honorable Mention For more than fifty years scientists have been concerned with the interrelationships of Earth and life. Over the past decade, however, geobiology, the name given to this interdisciplinary endeavour, has emerged as an exciting and rapidly expanding field, fuelled by advances in molecular phylogeny, a new microbial ecology made possible by the molecular revolution, increasingly sophisticated new techniques for imaging and determining chemical compositions of solids on nanometer scales, the development of non-traditional stable isotope analyses, Earth systems science and Earth system history, and accelerating exploration of other planets within and beyond our solar system. Geobiology has many faces: there is the microbial weathering of minerals, bacterial and skeletal biomineralization, the roles of autotrophic and heterotrophic metabolisms in elemental cycling, the redox history in the oceans and its relationship to evolution and the origin of life itself.. This book is the first to set out a coherent set of principles that underpin geobiology, and will act as a foundational text that will speed the dissemination of those principles. The chapters have been carefully chosen to provide intellectually rich but concise summaries of key topics, and each has been written by one or more of the leading scientists in that field.. Fundamentals of Geobiology is aimed at advanced undergraduates and graduates in the Earth and biological sciences, and to the growing number of scientists worldwide who have an interest in this burgeoning new discipline. Additional resources for this book can be found at: http://www.wiley.com/go/knoll/geobiology.
Geochemistry and the Origin of Life
Author: Satoru Nakashima
Publisher:
ISBN:
Category : Geochemistry
Languages : en
Pages : 374
Book Description
Publisher:
ISBN:
Category : Geochemistry
Languages : en
Pages : 374
Book Description
Microbial Evolution
Author: Howard Ochman
Publisher:
ISBN: 9781621820376
Category : Science
Languages : en
Pages : 0
Book Description
Bacteria have been the dominant forms of life on Earth for the past 3.5 billion years. They rapidly evolve, constantly changing their genetic architecture through horizontal DNA transfer and other mechanisms. Consequently, it can be difficult to define individual species and determine how they are related. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines how bacteria and other microbes evolve, focusing on insights from genomics-based studies. Contributors discuss the origins of new microbial populations, the evolutionary and ecological mechanisms that keep species separate once they have diverged, and the challenges of constructing phylogenetic trees that accurately reflect their relationships. They describe the organization of microbial genomes, the various mutations that occur, including the birth of new genes de novo and by duplication, and how natural selection acts on those changes. The role of horizontal gene transfer as a strong driver of microbial evolution is emphasized throughout. The authors also explore the geologic evidence for early microbial evolution and describe the use of microbial evolution experiments to examine phenomena like natural selection. This volume will thus be essential reading for all microbial ecologists, population geneticists, and evolutionary biologists.
Publisher:
ISBN: 9781621820376
Category : Science
Languages : en
Pages : 0
Book Description
Bacteria have been the dominant forms of life on Earth for the past 3.5 billion years. They rapidly evolve, constantly changing their genetic architecture through horizontal DNA transfer and other mechanisms. Consequently, it can be difficult to define individual species and determine how they are related. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines how bacteria and other microbes evolve, focusing on insights from genomics-based studies. Contributors discuss the origins of new microbial populations, the evolutionary and ecological mechanisms that keep species separate once they have diverged, and the challenges of constructing phylogenetic trees that accurately reflect their relationships. They describe the organization of microbial genomes, the various mutations that occur, including the birth of new genes de novo and by duplication, and how natural selection acts on those changes. The role of horizontal gene transfer as a strong driver of microbial evolution is emphasized throughout. The authors also explore the geologic evidence for early microbial evolution and describe the use of microbial evolution experiments to examine phenomena like natural selection. This volume will thus be essential reading for all microbial ecologists, population geneticists, and evolutionary biologists.
Size Limits of Very Small Microorganisms
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309066344
Category : Science
Languages : en
Pages : 171
Book Description
How small can a free-living organism be? On the surface, this question is straightforward-in principle, the smallest cells can be identified and measured. But understanding what factors determine this lower limit, and addressing the host of other questions that follow on from this knowledge, require a fundamental understanding of the chemistry and ecology of cellular life. The recent report of evidence for life in a martian meteorite and the prospect of searching for biological signatures in intelligently chosen samples from Mars and elsewhere bring a new immediacy to such questions. How do we recognize the morphological or chemical remnants of life in rocks deposited 4 billion years ago on another planet? Are the empirical limits on cell size identified by observation on Earth applicable to life wherever it may occur, or is minimum size a function of the particular chemistry of an individual planetary surface? These questions formed the focus of a workshop on the size limits of very small organisms, organized by the Steering .Group for the Workshop on Size Limits of Very Small Microorganisms and held on October 22 and 23, 1998. Eighteen invited panelists, representing fields ranging from cell biology and molecular genetics to paleontology and mineralogy, joined with an almost equal number of other participants in a wide-ranging exploration of minimum cell size and the challenge of interpreting micro- and nano-scale features of sedimentary rocks found on Earth or elsewhere in the solar system. This document contains the proceedings of that workshop. It includes position papers presented by the individual panelists, arranged by panel, along with a summary, for each of the four sessions, of extensive roundtable discussions that involved the panelists as well as other workshop participants.
Publisher: National Academies Press
ISBN: 0309066344
Category : Science
Languages : en
Pages : 171
Book Description
How small can a free-living organism be? On the surface, this question is straightforward-in principle, the smallest cells can be identified and measured. But understanding what factors determine this lower limit, and addressing the host of other questions that follow on from this knowledge, require a fundamental understanding of the chemistry and ecology of cellular life. The recent report of evidence for life in a martian meteorite and the prospect of searching for biological signatures in intelligently chosen samples from Mars and elsewhere bring a new immediacy to such questions. How do we recognize the morphological or chemical remnants of life in rocks deposited 4 billion years ago on another planet? Are the empirical limits on cell size identified by observation on Earth applicable to life wherever it may occur, or is minimum size a function of the particular chemistry of an individual planetary surface? These questions formed the focus of a workshop on the size limits of very small organisms, organized by the Steering .Group for the Workshop on Size Limits of Very Small Microorganisms and held on October 22 and 23, 1998. Eighteen invited panelists, representing fields ranging from cell biology and molecular genetics to paleontology and mineralogy, joined with an almost equal number of other participants in a wide-ranging exploration of minimum cell size and the challenge of interpreting micro- and nano-scale features of sedimentary rocks found on Earth or elsewhere in the solar system. This document contains the proceedings of that workshop. It includes position papers presented by the individual panelists, arranged by panel, along with a summary, for each of the four sessions, of extensive roundtable discussions that involved the panelists as well as other workshop participants.
Environmental Geochemistry of Potentially Toxic Metals
Author: Frederic R. Siegel
Publisher: Springer Science & Business Media
ISBN: 366204739X
Category : Science
Languages : en
Pages : 240
Book Description
Publisher: Springer Science & Business Media
ISBN: 366204739X
Category : Science
Languages : en
Pages : 240
Book Description