Author: Jacques Loeckx
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 248
Book Description
The Foundations of Program Verification Second Edition Jacques Loeckx and Kurt Sieber Fachbereich informatik Universität des Saariandes, Saarbrücken, Germany In collaboration with Ryan D. Stansifer Department of Computer Science Cornell University, USA This revised edition provides a precise mathematical background to several program verification techniques. It concentrates on those verification methods that have now become classic, such as the inductive assertions method of Floyd, the axiomatic method of Hoare, and Scott‘s fixpoint induction. The aim of the book is to present these different verification methods in a simple setting and to explain their mathematical background in particular the problems of correctness and completeness of the different methods are discussed in some detail and many helpful examples are included. Contents Authors’ Preface Part A: Preliminaries Mathematical Preliminaries Predicate Logic Part B: Semantics of Programming Languages Three Simple Programming Languages Fixpoints in Complete Partial Orders Denotational Semantics Part C: Program Verification Methods Correctness of Programs The Classical Methods of Floyd The Axiomatic Method of Hoare Verification Methods Based on Denotational Semantics LCF A Logic for Computable Functions Part D: Prospects An Overview of Further Developments Bibliography Index Review of the First Edition ‘… one of the better books currently available which introduces program verification.’ G. Bunting, University College Cardiff University Computing
The Foundations of Program Verification
Author: Jacques Loeckx
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 248
Book Description
The Foundations of Program Verification Second Edition Jacques Loeckx and Kurt Sieber Fachbereich informatik Universität des Saariandes, Saarbrücken, Germany In collaboration with Ryan D. Stansifer Department of Computer Science Cornell University, USA This revised edition provides a precise mathematical background to several program verification techniques. It concentrates on those verification methods that have now become classic, such as the inductive assertions method of Floyd, the axiomatic method of Hoare, and Scott‘s fixpoint induction. The aim of the book is to present these different verification methods in a simple setting and to explain their mathematical background in particular the problems of correctness and completeness of the different methods are discussed in some detail and many helpful examples are included. Contents Authors’ Preface Part A: Preliminaries Mathematical Preliminaries Predicate Logic Part B: Semantics of Programming Languages Three Simple Programming Languages Fixpoints in Complete Partial Orders Denotational Semantics Part C: Program Verification Methods Correctness of Programs The Classical Methods of Floyd The Axiomatic Method of Hoare Verification Methods Based on Denotational Semantics LCF A Logic for Computable Functions Part D: Prospects An Overview of Further Developments Bibliography Index Review of the First Edition ‘… one of the better books currently available which introduces program verification.’ G. Bunting, University College Cardiff University Computing
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 248
Book Description
The Foundations of Program Verification Second Edition Jacques Loeckx and Kurt Sieber Fachbereich informatik Universität des Saariandes, Saarbrücken, Germany In collaboration with Ryan D. Stansifer Department of Computer Science Cornell University, USA This revised edition provides a precise mathematical background to several program verification techniques. It concentrates on those verification methods that have now become classic, such as the inductive assertions method of Floyd, the axiomatic method of Hoare, and Scott‘s fixpoint induction. The aim of the book is to present these different verification methods in a simple setting and to explain their mathematical background in particular the problems of correctness and completeness of the different methods are discussed in some detail and many helpful examples are included. Contents Authors’ Preface Part A: Preliminaries Mathematical Preliminaries Predicate Logic Part B: Semantics of Programming Languages Three Simple Programming Languages Fixpoints in Complete Partial Orders Denotational Semantics Part C: Program Verification Methods Correctness of Programs The Classical Methods of Floyd The Axiomatic Method of Hoare Verification Methods Based on Denotational Semantics LCF A Logic for Computable Functions Part D: Prospects An Overview of Further Developments Bibliography Index Review of the First Edition ‘… one of the better books currently available which introduces program verification.’ G. Bunting, University College Cardiff University Computing
Program Verification
Author: Timothy T.R. Colburn
Publisher: Springer Science & Business Media
ISBN: 9401117934
Category : Computers
Languages : en
Pages : 454
Book Description
Among the most important problems confronting computer science is that of developing a paradigm appropriate to the discipline. Proponents of formal methods - such as John McCarthy, C.A.R. Hoare, and Edgar Dijkstra - have advanced the position that computing is a mathematical activity and that computer science should model itself after mathematics. Opponents of formal methods - by contrast, suggest that programming is the activity which is fundamental to computer science and that there are important differences that distinguish it from mathematics, which therefore cannot provide a suitable paradigm. Disagreement over the place of formal methods in computer science has recently arisen in the form of renewed interest in the nature and capacity of program verification as a method for establishing the reliability of software systems. A paper that appeared in Communications of the ACM entitled, `Program Verification: The Very Idea', by James H. Fetzer triggered an extended debate that has been discussed in several journals and that has endured for several years, engaging the interest of computer scientists (both theoretical and applied) and of other thinkers from a wide range of backgrounds who want to understand computer science as a domain of inquiry. The editors of this collection have brought together many of the most interesting and important studies that contribute to answering questions about the nature and the limits of computer science. These include early papers advocating the mathematical paradigm by McCarthy, Naur, R. Floyd, and Hoare (in Part I), others that elaborate the paradigm by Hoare, Meyer, Naur, and Scherlis and Scott (in Part II), challenges, limits and alternatives explored by C. Floyd, Smith, Blum, and Naur (in Part III), and recent work focusing on formal verification by DeMillo, Lipton, and Perlis, Fetzer, Cohn, and Colburn (in Part IV). It provides essential resources for further study. This volume will appeal to scientists, philosophers, and laypersons who want to understand the theoretical foundations of computer science and be appropriately positioned to evaluate the scope and limits of the discipline.
Publisher: Springer Science & Business Media
ISBN: 9401117934
Category : Computers
Languages : en
Pages : 454
Book Description
Among the most important problems confronting computer science is that of developing a paradigm appropriate to the discipline. Proponents of formal methods - such as John McCarthy, C.A.R. Hoare, and Edgar Dijkstra - have advanced the position that computing is a mathematical activity and that computer science should model itself after mathematics. Opponents of formal methods - by contrast, suggest that programming is the activity which is fundamental to computer science and that there are important differences that distinguish it from mathematics, which therefore cannot provide a suitable paradigm. Disagreement over the place of formal methods in computer science has recently arisen in the form of renewed interest in the nature and capacity of program verification as a method for establishing the reliability of software systems. A paper that appeared in Communications of the ACM entitled, `Program Verification: The Very Idea', by James H. Fetzer triggered an extended debate that has been discussed in several journals and that has endured for several years, engaging the interest of computer scientists (both theoretical and applied) and of other thinkers from a wide range of backgrounds who want to understand computer science as a domain of inquiry. The editors of this collection have brought together many of the most interesting and important studies that contribute to answering questions about the nature and the limits of computer science. These include early papers advocating the mathematical paradigm by McCarthy, Naur, R. Floyd, and Hoare (in Part I), others that elaborate the paradigm by Hoare, Meyer, Naur, and Scherlis and Scott (in Part II), challenges, limits and alternatives explored by C. Floyd, Smith, Blum, and Naur (in Part III), and recent work focusing on formal verification by DeMillo, Lipton, and Perlis, Fetzer, Cohn, and Colburn (in Part IV). It provides essential resources for further study. This volume will appeal to scientists, philosophers, and laypersons who want to understand the theoretical foundations of computer science and be appropriately positioned to evaluate the scope and limits of the discipline.
Foundations of Probabilistic Programming
Author: Gilles Barthe
Publisher: Cambridge University Press
ISBN: 110848851X
Category : Computers
Languages : en
Pages : 583
Book Description
This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.
Publisher: Cambridge University Press
ISBN: 110848851X
Category : Computers
Languages : en
Pages : 583
Book Description
This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.
Deductive Software Verification – The KeY Book
Author: Wolfgang Ahrendt
Publisher: Springer
ISBN: 3319498126
Category : Computers
Languages : en
Pages : 714
Book Description
Static analysis of software with deductive methods is a highly dynamic field of research on the verge of becoming a mainstream technology in software engineering. It consists of a large portfolio of - mostly fully automated - analyses: formal verification, test generation, security analysis, visualization, and debugging. All of them are realized in the state-of-art deductive verification framework KeY. This book is the definitive guide to KeY that lets you explore the full potential of deductive software verification in practice. It contains the complete theory behind KeY for active researchers who want to understand it in depth or use it in their own work. But the book also features fully self-contained chapters on the Java Modeling Language and on Using KeY that require nothing else than familiarity with Java. All other chapters are accessible for graduate students (M.Sc. level and beyond). The KeY framework is free and open software, downloadable from the book companion website which contains also all code examples mentioned in this book.
Publisher: Springer
ISBN: 3319498126
Category : Computers
Languages : en
Pages : 714
Book Description
Static analysis of software with deductive methods is a highly dynamic field of research on the verge of becoming a mainstream technology in software engineering. It consists of a large portfolio of - mostly fully automated - analyses: formal verification, test generation, security analysis, visualization, and debugging. All of them are realized in the state-of-art deductive verification framework KeY. This book is the definitive guide to KeY that lets you explore the full potential of deductive software verification in practice. It contains the complete theory behind KeY for active researchers who want to understand it in depth or use it in their own work. But the book also features fully self-contained chapters on the Java Modeling Language and on Using KeY that require nothing else than familiarity with Java. All other chapters are accessible for graduate students (M.Sc. level and beyond). The KeY framework is free and open software, downloadable from the book companion website which contains also all code examples mentioned in this book.
The Foundations of Program Verification
Author: Kurt Sieber
Publisher: Springer-Verlag
ISBN: 3322967530
Category : Technology & Engineering
Languages : de
Pages : 236
Book Description
Publisher: Springer-Verlag
ISBN: 3322967530
Category : Technology & Engineering
Languages : de
Pages : 236
Book Description
Verification of Object-Oriented Software. The KeY Approach
Author: Bernhard Beckert
Publisher: Springer Science & Business Media
ISBN: 354068977X
Category : Computers
Languages : en
Pages : 669
Book Description
The ultimate goal of program verification is not the theory behind the tools or the tools themselves, but the application of the theory and tools in the software engineering process. Our society relies on the correctness of a vast and growing amount of software. Improving the software engineering process is an important, long-term goal with many steps. Two of those steps are the KeY tool and this KeY book.
Publisher: Springer Science & Business Media
ISBN: 354068977X
Category : Computers
Languages : en
Pages : 669
Book Description
The ultimate goal of program verification is not the theory behind the tools or the tools themselves, but the application of the theory and tools in the software engineering process. Our society relies on the correctness of a vast and growing amount of software. Improving the software engineering process is an important, long-term goal with many steps. Two of those steps are the KeY tool and this KeY book.
Foundations for Programming Languages
Author: John C. Mitchell
Publisher: Mit Press
ISBN: 9780262133210
Category : Computers
Languages : en
Pages : 846
Book Description
"Programming languages embody the pragmatics of designing software systems, and also the mathematical concepts which underlie them. Anyone who wants to know how, for example, object-oriented programming rests upon a firm foundation in logic should read this book. It guides one surefootedly through the rich variety of basic programming concepts developed over the past forty years." -- Robin Milner, Professor of Computer Science, The Computer Laboratory, Cambridge University "Programming languages need not be designed in an intellectual vacuum; John Mitchell's book provides an extensive analysis of the fundamental notions underlying programming constructs. A basic grasp of this material is essential for the understanding, comparative analysis, and design of programming languages." -- Luca Cardelli, Digital Equipment Corporation Written for advanced undergraduate and beginning graduate students, "Foundations for Programming Languages" uses a series of typed lambda calculi to study the axiomatic, operational, and denotational semantics of sequential programming languages. Later chapters are devoted to progressively more sophisticated type systems.
Publisher: Mit Press
ISBN: 9780262133210
Category : Computers
Languages : en
Pages : 846
Book Description
"Programming languages embody the pragmatics of designing software systems, and also the mathematical concepts which underlie them. Anyone who wants to know how, for example, object-oriented programming rests upon a firm foundation in logic should read this book. It guides one surefootedly through the rich variety of basic programming concepts developed over the past forty years." -- Robin Milner, Professor of Computer Science, The Computer Laboratory, Cambridge University "Programming languages need not be designed in an intellectual vacuum; John Mitchell's book provides an extensive analysis of the fundamental notions underlying programming constructs. A basic grasp of this material is essential for the understanding, comparative analysis, and design of programming languages." -- Luca Cardelli, Digital Equipment Corporation Written for advanced undergraduate and beginning graduate students, "Foundations for Programming Languages" uses a series of typed lambda calculi to study the axiomatic, operational, and denotational semantics of sequential programming languages. Later chapters are devoted to progressively more sophisticated type systems.
Rigorous Software Development
Author: José Bacelar Almeida
Publisher: Springer Science & Business Media
ISBN: 0857290185
Category : Computers
Languages : en
Pages : 269
Book Description
The use of mathematical methods in the development of software is essential when reliable systems are sought; in particular they are now strongly recommended by the official norms adopted in the production of critical software. Program Verification is the area of computer science that studies mathematical methods for checking that a program conforms to its specification. This text is a self-contained introduction to program verification using logic-based methods, presented in the broader context of formal methods for software engineering. The idea of specifying the behaviour of individual software components by attaching contracts to them is now a widely followed approach in program development, which has given rise notably to the development of a number of behavioural interface specification languages and program verification tools. A foundation for the static verification of programs based on contract-annotated routines is laid out in the book. These can be independently verified, which provides a modular approach to the verification of software. The text assumes only basic knowledge of standard mathematical concepts that should be familiar to any computer science student. It includes a self-contained introduction to propositional logic and first-order reasoning with theories, followed by a study of program verification that combines theoretical and practical aspects - from a program logic (a variant of Hoare logic for programs containing user-provided annotations) to the use of a realistic tool for the verification of C programs (annotated using the ACSL specification language), through the generation of verification conditions and the static verification of runtime errors.
Publisher: Springer Science & Business Media
ISBN: 0857290185
Category : Computers
Languages : en
Pages : 269
Book Description
The use of mathematical methods in the development of software is essential when reliable systems are sought; in particular they are now strongly recommended by the official norms adopted in the production of critical software. Program Verification is the area of computer science that studies mathematical methods for checking that a program conforms to its specification. This text is a self-contained introduction to program verification using logic-based methods, presented in the broader context of formal methods for software engineering. The idea of specifying the behaviour of individual software components by attaching contracts to them is now a widely followed approach in program development, which has given rise notably to the development of a number of behavioural interface specification languages and program verification tools. A foundation for the static verification of programs based on contract-annotated routines is laid out in the book. These can be independently verified, which provides a modular approach to the verification of software. The text assumes only basic knowledge of standard mathematical concepts that should be familiar to any computer science student. It includes a self-contained introduction to propositional logic and first-order reasoning with theories, followed by a study of program verification that combines theoretical and practical aspects - from a program logic (a variant of Hoare logic for programs containing user-provided annotations) to the use of a realistic tool for the verification of C programs (annotated using the ACSL specification language), through the generation of verification conditions and the static verification of runtime errors.
Introduction to Static Analysis
Author: Xavier Rival
Publisher: MIT Press
ISBN: 0262043416
Category : Computers
Languages : en
Pages : 315
Book Description
A self-contained introduction to abstract interpretation–based static analysis, an essential resource for students, developers, and users. Static program analysis, or static analysis, aims to discover semantic properties of programs without running them. It plays an important role in all phases of development, including verification of specifications and programs, the synthesis of optimized code, and the refactoring and maintenance of software applications. This book offers a self-contained introduction to static analysis, covering the basics of both theoretical foundations and practical considerations in the use of static analysis tools. By offering a quick and comprehensive introduction for nonspecialists, the book fills a notable gap in the literature, which until now has consisted largely of scientific articles on advanced topics. The text covers the mathematical foundations of static analysis, including semantics, semantic abstraction, and computation of program invariants; more advanced notions and techniques, including techniques for enhancing the cost-accuracy balance of analysis and abstractions for advanced programming features and answering a wide range of semantic questions; and techniques for implementing and using static analysis tools. It begins with background information and an intuitive and informal introduction to the main static analysis principles and techniques. It then formalizes the scientific foundations of program analysis techniques, considers practical aspects of implementation, and presents more advanced applications. The book can be used as a textbook in advanced undergraduate and graduate courses in static analysis and program verification, and as a reference for users, developers, and experts.
Publisher: MIT Press
ISBN: 0262043416
Category : Computers
Languages : en
Pages : 315
Book Description
A self-contained introduction to abstract interpretation–based static analysis, an essential resource for students, developers, and users. Static program analysis, or static analysis, aims to discover semantic properties of programs without running them. It plays an important role in all phases of development, including verification of specifications and programs, the synthesis of optimized code, and the refactoring and maintenance of software applications. This book offers a self-contained introduction to static analysis, covering the basics of both theoretical foundations and practical considerations in the use of static analysis tools. By offering a quick and comprehensive introduction for nonspecialists, the book fills a notable gap in the literature, which until now has consisted largely of scientific articles on advanced topics. The text covers the mathematical foundations of static analysis, including semantics, semantic abstraction, and computation of program invariants; more advanced notions and techniques, including techniques for enhancing the cost-accuracy balance of analysis and abstractions for advanced programming features and answering a wide range of semantic questions; and techniques for implementing and using static analysis tools. It begins with background information and an intuitive and informal introduction to the main static analysis principles and techniques. It then formalizes the scientific foundations of program analysis techniques, considers practical aspects of implementation, and presents more advanced applications. The book can be used as a textbook in advanced undergraduate and graduate courses in static analysis and program verification, and as a reference for users, developers, and experts.
Practical Foundations for Programming Languages
Author: Robert Harper
Publisher: Cambridge University Press
ISBN: 1107150302
Category : Computers
Languages : en
Pages : 513
Book Description
This book unifies a broad range of programming language concepts under the framework of type systems and structural operational semantics.
Publisher: Cambridge University Press
ISBN: 1107150302
Category : Computers
Languages : en
Pages : 513
Book Description
This book unifies a broad range of programming language concepts under the framework of type systems and structural operational semantics.