The Formation of Shocks in 3-dimensional Fluids

The Formation of Shocks in 3-dimensional Fluids PDF Author: Demetrios Christodoulou
Publisher: European Mathematical Society
ISBN: 9783037190319
Category : Mathematics
Languages : en
Pages : 1008

Get Book Here

Book Description
The equations describing the motion of a perfect fluid were first formulated by Euler in 1752. These equations were among the first partial differential equations to be written down, but, after a lapse of two and a half centuries, we are still far from adequately understanding the observed phenomena which are supposed to lie within their domain of validity. These phenomena include the formation and evolution of shocks in compressible fluids, the subject of the present monograph. The first work on shock formation was done by Riemann in 1858. However, his analysis was limited to the simplified case of one space dimension. Since then, several deep physical insights have been attained and new methods of mathematical analysis invented. Nevertheless, the theory of the formation and evolution of shocks in real three-dimensional fluids has remained up to this day fundamentally incomplete. This monograph considers the relativistic Euler equations in three space dimensions for a perfect fluid with an arbitrary equation of state. The author considers initial data for these equations which outside a sphere coincide with the data corresponding to a constant state. Under suitable restriction on the size of the initial departure from the constant state, he establishes theorems that give a complete description of the maximal classical development. In particular, it is shown that the boundary of the domain of the maximal classical development has a singular part where the inverse density of the wave fronts vanishes, signalling shock formation. The theorems give a detailed description of the geometry of this singular boundary and a detailed analysis of the behavior of the solution there. A complete picture of shock formation in three-dimensional fluids is thereby obtained. The approach is geometric, the central concept being that of the acoustical spacetime manifold.

The Formation of Shocks in 3-dimensional Fluids

The Formation of Shocks in 3-dimensional Fluids PDF Author: Demetrios Christodoulou
Publisher: European Mathematical Society
ISBN: 9783037190319
Category : Mathematics
Languages : en
Pages : 1008

Get Book Here

Book Description
The equations describing the motion of a perfect fluid were first formulated by Euler in 1752. These equations were among the first partial differential equations to be written down, but, after a lapse of two and a half centuries, we are still far from adequately understanding the observed phenomena which are supposed to lie within their domain of validity. These phenomena include the formation and evolution of shocks in compressible fluids, the subject of the present monograph. The first work on shock formation was done by Riemann in 1858. However, his analysis was limited to the simplified case of one space dimension. Since then, several deep physical insights have been attained and new methods of mathematical analysis invented. Nevertheless, the theory of the formation and evolution of shocks in real three-dimensional fluids has remained up to this day fundamentally incomplete. This monograph considers the relativistic Euler equations in three space dimensions for a perfect fluid with an arbitrary equation of state. The author considers initial data for these equations which outside a sphere coincide with the data corresponding to a constant state. Under suitable restriction on the size of the initial departure from the constant state, he establishes theorems that give a complete description of the maximal classical development. In particular, it is shown that the boundary of the domain of the maximal classical development has a singular part where the inverse density of the wave fronts vanishes, signalling shock formation. The theorems give a detailed description of the geometry of this singular boundary and a detailed analysis of the behavior of the solution there. A complete picture of shock formation in three-dimensional fluids is thereby obtained. The approach is geometric, the central concept being that of the acoustical spacetime manifold.

Recent Advances in Nonlinear Partial Differential Equations and Applications

Recent Advances in Nonlinear Partial Differential Equations and Applications PDF Author: Luis López Bonilla
Publisher: American Mathematical Soc.
ISBN: 0821842110
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
The articles of this book are written by leading experts in partial differential equations and their applications, who present overviews here of recent advances in this broad area of mathematics. The formation of shocks in fluids, modern numerical computation of turbulence, the breaking of the Einstein equations in a vacuum, the dynamics of defects in crystals, effects due to entropy in hyperbolic conservation laws, the Navier-Stokes and other limits of the Boltzmann equation, occupancy times for Brownian motion in a two dimensional wedge, and new methods of analyzing and solving integrable systems are some of this volume's subjects. The reader will find an exposition of important advances without a lot of technicalities and with an emphasis on the basic ideas of this field.

Evolution Equations

Evolution Equations PDF Author: David Ellwood
Publisher: American Mathematical Soc.
ISBN: 0821868616
Category : Mathematics
Languages : en
Pages : 587

Get Book Here

Book Description
This volume is a collection of notes from lectures given at the 2008 Clay Mathematics Institute Summer School, held in Zürich, Switzerland. The lectures were designed for graduate students and mathematicians within five years of the Ph.D., and the main focus of the program was on recent progress in the theory of evolution equations. Such equations lie at the heart of many areas of mathematical physics and arise not only in situations with a manifest time evolution (such as linear and nonlinear wave and Schrödinger equations) but also in the high energy or semi-classical limits of elliptic problems. The three main courses focused primarily on microlocal analysis and spectral and scattering theory, the theory of the nonlinear Schrödinger and wave equations, and evolution problems in general relativity. These major topics were supplemented by several mini-courses reporting on the derivation of effective evolution equations from microscopic quantum dynamics; on wave maps with and without symmetries; on quantum N-body scattering, diffraction of waves, and symmetric spaces; and on nonlinear Schrödinger equations at critical regularity. Although highly detailed treatments of some of these topics are now available in the published literature, in this collection the reader can learn the fundamental ideas and tools with a minimum of technical machinery. Moreover, the treatment in this volume emphasizes common themes and techniques in the field, including exact and approximate conservation laws, energy methods, and positive commutator arguments. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Everything About Gravity - Proceedings Of The Second Lecospa International Symposium

Everything About Gravity - Proceedings Of The Second Lecospa International Symposium PDF Author: Pisin Chen
Publisher: World Scientific
ISBN: 981320396X
Category : Science
Languages : en
Pages : 681

Get Book Here

Book Description
The proceedings of the 2nd LeCosPA International Symposium, 'Everything about Gravity', collects 78 papers contributed by the symposium's Plenary Session and Parallel Session speakers. Organizers of the Parallel Sessions have in addition prepared summaries for their own sessions. The topics range from quasi-local energy in GR in the presence of gravitational radiations, a gauge theory perspective of gravity, naked black hole firewalls related to the black hole information loss paradox, a new theory of spacetime quantization, relations between the Schwinger effect and the Hawking radiation and Unruh effect, conformal frames in cosmology, surprises in nonrelativistic naturalness, inflation and tensor fluctuations, emergent spacetime for quantum gravity, understanding strongly coupled magnetism through holographic principle, the detections of dark matter, ultra-high energy cosmic neutrinos and cosmic rays, etc. Last but not least, the closing remark delivered by John Ellis raised the following question: Does cosmological inflation require a modification of Einstein's gravity?After 100 years of remarkable success of Einstein's general relativity, the development of a successful quantum theory of gravity has become a major goal in physics in the 21st century. This volume serves as a valuable reference for scientists who are interested in frontier research topics of gravity.

Equations of Motion in Relativistic Gravity

Equations of Motion in Relativistic Gravity PDF Author: Dirk Puetzfeld
Publisher: Springer
ISBN: 3319183354
Category : Science
Languages : en
Pages : 842

Get Book Here

Book Description
The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who like to enter this field.

Fluid Mechanics

Fluid Mechanics PDF Author: L D Landau
Publisher: Elsevier
ISBN: 1483161048
Category : Technology & Engineering
Languages : en
Pages : 556

Get Book Here

Book Description
Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.

Nonlinear Conservation Laws and Applications

Nonlinear Conservation Laws and Applications PDF Author: Alberto Bressan
Publisher: Springer Science & Business Media
ISBN: 1441995544
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.

Hyperbolic Systems of Conservation Laws

Hyperbolic Systems of Conservation Laws PDF Author: Philippe G. LeFloch
Publisher: Birkhäuser
ISBN: 3034881509
Category : Mathematics
Languages : en
Pages : 301

Get Book Here

Book Description
This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.

General Relativity and the Einstein Equations

General Relativity and the Einstein Equations PDF Author: Yvonne Choquet-Bruhat
Publisher: Oxford University Press
ISBN: 0199230722
Category : Mathematics
Languages : en
Pages : 812

Get Book Here

Book Description
General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.

Hyperbolic Conservation Laws in Continuum Physics

Hyperbolic Conservation Laws in Continuum Physics PDF Author: Constantine M. Dafermos
Publisher: Springer
ISBN: 3662494515
Category : Mathematics
Languages : en
Pages : 852

Get Book Here

Book Description
OLD TEXT 4th Edition to be replaced: This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles. From the reviews of the 3rd edition: "This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH "A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews