The Fermion

The Fermion PDF Author: Paul F. Kisak
Publisher: Createspace Independent Publishing Platform
ISBN: 9781523261758
Category :
Languages : en
Pages : 298

Get Book Here

Book Description
In particle physics, a fermion (a name coined by Paul Dirac from the surname of Enrico Fermi) is any particle characterized by Fermi-Dirac statistics. These particles obey the Pauli exclusion principle. Fermions include all quarks and leptons, as well as any composite particle made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose-Einstein statistics. A fermion can be an elementary particle, such as the electron, or it can be a composite particle, such as the proton. According to the spin-statistics theorem in any reasonable relativistic quantum field theory, particles with integer spin are bosons, while particles with half-integer spin are fermions. Besides this spin characteristic, fermions have another specific property: they possess conserved baryon or lepton quantum numbers. Therefore what is usually referred as the spin statistics relation is in fact a spin statistics-quantum number relation. As a consequence of the Pauli exclusion principle, only one fermion can occupy a particular quantum state at any given time. If multiple fermions have the same spatial probability distribution, then at least one property of each fermion, such as its spin, must be different. Fermions are usually associated with matter, whereas bosons are generally force carrier particles, although in the current state of particle physics the distinction between the two concepts is unclear. Weakly interacting fermions can also display bosonic behavior under extreme conditions. At low temperature fermions show superfluidity for uncharged particles and superconductivity for charged particles. Composite fermions, such as protons and neutrons, are the key building blocks of everyday matter.

The Fermion

The Fermion PDF Author: Paul F. Kisak
Publisher: Createspace Independent Publishing Platform
ISBN: 9781523261758
Category :
Languages : en
Pages : 298

Get Book Here

Book Description
In particle physics, a fermion (a name coined by Paul Dirac from the surname of Enrico Fermi) is any particle characterized by Fermi-Dirac statistics. These particles obey the Pauli exclusion principle. Fermions include all quarks and leptons, as well as any composite particle made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose-Einstein statistics. A fermion can be an elementary particle, such as the electron, or it can be a composite particle, such as the proton. According to the spin-statistics theorem in any reasonable relativistic quantum field theory, particles with integer spin are bosons, while particles with half-integer spin are fermions. Besides this spin characteristic, fermions have another specific property: they possess conserved baryon or lepton quantum numbers. Therefore what is usually referred as the spin statistics relation is in fact a spin statistics-quantum number relation. As a consequence of the Pauli exclusion principle, only one fermion can occupy a particular quantum state at any given time. If multiple fermions have the same spatial probability distribution, then at least one property of each fermion, such as its spin, must be different. Fermions are usually associated with matter, whereas bosons are generally force carrier particles, although in the current state of particle physics the distinction between the two concepts is unclear. Weakly interacting fermions can also display bosonic behavior under extreme conditions. At low temperature fermions show superfluidity for uncharged particles and superconductivity for charged particles. Composite fermions, such as protons and neutrons, are the key building blocks of everyday matter.

Quantum Field Theory and Condensed Matter

Quantum Field Theory and Condensed Matter PDF Author: Ramamurti Shankar
Publisher: Cambridge University Press
ISBN: 1108363989
Category : Science
Languages : en
Pages : 557

Get Book Here

Book Description
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.

Algebraic and Diagrammatic Methods in Many-Fermion Theory

Algebraic and Diagrammatic Methods in Many-Fermion Theory PDF Author: Frank E. Harris
Publisher: Courier Dover Publications
ISBN: 0486837211
Category : Psychology
Languages : en
Pages : 418

Get Book Here

Book Description
This text on the use of electron correlation effects in the description of the electronic structure of atoms, molecules, and crystals is intended for graduate students in physical chemistry and physics. Modern theories of electronic structure and methods of incorporating electron correlation contributions are developed using a diagrammatic and algebraic formulation, and the methods developed in the text are illustrated with examples from molecular and solid state quantum mechanics. A brief Introduction is followed by chapters on operator algebra, the independent-particle model, occupation-number formalism, and diagrams. Additional topics include the configuration-interaction method, the many-body perturbation theory, and the coupled-cluster method.

The Kondo Problem to Heavy Fermions

The Kondo Problem to Heavy Fermions PDF Author: Alexander Cyril Hewson
Publisher: Cambridge University Press
ISBN: 9780521599474
Category : Science
Languages : en
Pages : 476

Get Book Here

Book Description
The behaviour of magnetic impurities in metals has posed problems to challenge the condensed matter theorist over the past 30 years. This book deals with the concepts and techniques which have been developed to meet this challenge, and with their application to the interpretation of experiments. This book will be of interest to condensed matter physicists, particularly those interested in strong correlation problems. The detailed discussions of advanced many-body techniques should make it of interest to theoretical physicists in general.

Theory of Heavy-Fermion Compounds

Theory of Heavy-Fermion Compounds PDF Author: Miron Ya. Amusia
Publisher: Springer
ISBN: 3319108255
Category : Science
Languages : en
Pages : 375

Get Book Here

Book Description
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.

The Interacting Boson-Fermion Model

The Interacting Boson-Fermion Model PDF Author: F. Iachello
Publisher: Cambridge University Press
ISBN: 9780521021647
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
This book describes the mathematical framework on which the interacting boson-fermion model is built and presents applications to a variety of situations encountered in nuclei. It addresses both the analytical and the numerical aspects of the problem. The analytical aspect requires the introduction of rather complex group theoretic methods, including the use of graded (or super) Lie algebras. The first (and so far only) example of supersymmetry occurring in nature is also discussed.

The Continuum Limit of Causal Fermion Systems

The Continuum Limit of Causal Fermion Systems PDF Author: Felix Finster
Publisher: Springer
ISBN: 3319420674
Category : Science
Languages : en
Pages : 554

Get Book Here

Book Description
This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries". The dynamics is described by a novel variational principle, called the causal action principle. In addition to the basics, the book provides all the necessary mathematical background and explains how the causal action principle gives rise to the interactions of the standard model plus gravity on the level of second-quantized fermionic fields coupled to classical bosonic fields. The focus is on getting a mathematically sound connection between causal fermion systems and physical systems in Minkowski space. The book is intended for graduate students entering the field, and is furthermore a valuable reference work for researchers in quantum field theory and quantum gravity.

Fermion Algorithms - Proceedings Of The Workshop

Fermion Algorithms - Proceedings Of The Workshop PDF Author: Frithjof Karsch
Publisher: World Scientific
ISBN: 9814555363
Category :
Languages : en
Pages : 262

Get Book Here

Book Description
Novel Monte Carlo Algorithms for Fermionic Systems are badly needed in high energy and solid state physics. At this workshop the newest developments in this direction were presented, in particular those concerning multi-grid techniques, cluster algorithms and massively parallel implementations.

The Interacting Boson-Fermion Model

The Interacting Boson-Fermion Model PDF Author: F. Iachello
Publisher: Cambridge University Press
ISBN: 0521380928
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
The interacting boson-fermion model has become in recent years the standard model for the description of atomic nuclei with an odd number of protons and/or neutrons. This book describes the mathematical framework on which the interacting boson-fermion model is built and presents applications to a variety of situations encountered in nuclei. The book addresses both the analytical and the numerical aspects of the problem. The analytical aspect requires the introduction of rather complex group theoretic methods, including the use of graded (or super) Lie algebras. The first (and so far only) example of supersymmetry occurring in nature is also discussed. The book is the first comprehensive treatment of the subject and will appeal to both theoretical and experimental physicists. The large number of explicit formulas for level energies, electromagnetic transition rates and intensities of transfer reactions presented in the book provide a simple but detailed way to analyse experimental data. This book can also be used as a textbook for advanced graduate students.

Quantum Theory, Deformation and Integrability

Quantum Theory, Deformation and Integrability PDF Author: R. Carroll
Publisher: Elsevier
ISBN: 0080540082
Category : Mathematics
Languages : en
Pages : 421

Get Book Here

Book Description
About four years ago a prominent string theorist was quoted as saying that it might be possible to understand quantum mechanics by the year 2000. Sometimes new mathematical developments make such understanding appear possible and even close, but on the other hand, increasing lack of experimental verification make it seem to be further distant. In any event one seems to arrive at new revolutions in physics and mathematics every year. This book hopes to convey some of the excitment of this period, but will adopt a relatively pedestrian approach designed to illuminate the relations between quantum and classical. There will be some discussion of philosophical matters such as measurement, uncertainty, decoherence, etc. but philosophy will not be emphasized; generally we want to enjoy the fruits of computation based on the operator formulation of QM and quantum field theory. In Chapter 1 connections of QM to deterministic behavior are exhibited in the trajectory representations of Faraggi-Matone. Chapter 1 also includes a review of KP theory and some preliminary remarks on coherent states, density matrices, etc. and more on deterministic theory. We develop in Chapter 4 relations between quantization and integrability based on Moyal brackets, discretizations, KP, strings and Hirota formulas, and in Chapter 2 we study the QM of embedded curves and surfaces illustrating some QM effects of geometry. Chapter 3 is on quantum integrable systems, quantum groups, and modern deformation quantization. Chapter 5 involves the Whitham equations in various roles mediating between QM and classical behavior. In particular, connections to Seiberg-Witten theory (arising in N = 2 supersymmetric (susy) Yang-Mills (YM) theory) are discussed and we would still like to understand more deeply what is going on. Thus in Chapter 5 we will try to give some conceptual background for susy, gauge theories, renormalization, etc. from both a physical and mathematical point of view. In Chapter 6 we continue the deformation quantization then by exhibiting material based on and related to noncommutative geometry and gauge theory.