Author: W.R. Knorr
Publisher: Springer Science & Business Media
ISBN: 9789027705099
Category : Mathematics
Languages : en
Pages : 402
Book Description
The present work has three principal objectives: (1) to fix the chronology of the development of the pre-Euclidean theory of incommensurable magnitudes beginning from the first discoveries by fifth-century Pythago reans, advancing through the achievements of Theodorus of Cyrene, Theaetetus, Archytas and Eudoxus, and culminating in the formal theory of Elements X; (2) to correlate the stages of this developing theory with the evolution of the Elements as a whole; and (3) to establish that the high standards of rigor characteristic of this evolution were intrinsic to the mathematicians' work. In this third point, we wish to counterbalance a prevalent thesis that the impulse toward mathematical rigor was purely a response to the dialecticians' critique of foundations; on the contrary, we shall see that not until Eudoxus does there appear work which may be described as purely foundational in its intent. Through the examination of these problems, the present work will either alter or set in a new light virtually every standard thesis about the fourth-century Greek geometry. I. THE PRE-EUCLIDEAN THEORY OF INCOMMENSURABLE MAGNITUDES The Euclidean theory of incommensurable magnitudes, as preserved in Book X of the Elements, is a synthetic masterwork. Yet there are detect able seams in its structure, seams revealed both through terminology and through the historical clues provided by the neo-Platonist commentator Proclus.
The Evolution of the Euclidean Elements
Author: W.R. Knorr
Publisher: Springer Science & Business Media
ISBN: 9789027705099
Category : Mathematics
Languages : en
Pages : 402
Book Description
The present work has three principal objectives: (1) to fix the chronology of the development of the pre-Euclidean theory of incommensurable magnitudes beginning from the first discoveries by fifth-century Pythago reans, advancing through the achievements of Theodorus of Cyrene, Theaetetus, Archytas and Eudoxus, and culminating in the formal theory of Elements X; (2) to correlate the stages of this developing theory with the evolution of the Elements as a whole; and (3) to establish that the high standards of rigor characteristic of this evolution were intrinsic to the mathematicians' work. In this third point, we wish to counterbalance a prevalent thesis that the impulse toward mathematical rigor was purely a response to the dialecticians' critique of foundations; on the contrary, we shall see that not until Eudoxus does there appear work which may be described as purely foundational in its intent. Through the examination of these problems, the present work will either alter or set in a new light virtually every standard thesis about the fourth-century Greek geometry. I. THE PRE-EUCLIDEAN THEORY OF INCOMMENSURABLE MAGNITUDES The Euclidean theory of incommensurable magnitudes, as preserved in Book X of the Elements, is a synthetic masterwork. Yet there are detect able seams in its structure, seams revealed both through terminology and through the historical clues provided by the neo-Platonist commentator Proclus.
Publisher: Springer Science & Business Media
ISBN: 9789027705099
Category : Mathematics
Languages : en
Pages : 402
Book Description
The present work has three principal objectives: (1) to fix the chronology of the development of the pre-Euclidean theory of incommensurable magnitudes beginning from the first discoveries by fifth-century Pythago reans, advancing through the achievements of Theodorus of Cyrene, Theaetetus, Archytas and Eudoxus, and culminating in the formal theory of Elements X; (2) to correlate the stages of this developing theory with the evolution of the Elements as a whole; and (3) to establish that the high standards of rigor characteristic of this evolution were intrinsic to the mathematicians' work. In this third point, we wish to counterbalance a prevalent thesis that the impulse toward mathematical rigor was purely a response to the dialecticians' critique of foundations; on the contrary, we shall see that not until Eudoxus does there appear work which may be described as purely foundational in its intent. Through the examination of these problems, the present work will either alter or set in a new light virtually every standard thesis about the fourth-century Greek geometry. I. THE PRE-EUCLIDEAN THEORY OF INCOMMENSURABLE MAGNITUDES The Euclidean theory of incommensurable magnitudes, as preserved in Book X of the Elements, is a synthetic masterwork. Yet there are detect able seams in its structure, seams revealed both through terminology and through the historical clues provided by the neo-Platonist commentator Proclus.
The Evolution of the Euclidean Elements
Author: W.R. Knorr
Publisher: Springer Science & Business Media
ISBN: 9401017549
Category : Philosophy
Languages : en
Pages : 389
Book Description
The present work has three principal objectives: (1) to fix the chronology of the development of the pre-Euclidean theory of incommensurable magnitudes beginning from the first discoveries by fifth-century Pythago reans, advancing through the achievements of Theodorus of Cyrene, Theaetetus, Archytas and Eudoxus, and culminating in the formal theory of Elements X; (2) to correlate the stages of this developing theory with the evolution of the Elements as a whole; and (3) to establish that the high standards of rigor characteristic of this evolution were intrinsic to the mathematicians' work. In this third point, we wish to counterbalance a prevalent thesis that the impulse toward mathematical rigor was purely a response to the dialecticians' critique of foundations; on the contrary, we shall see that not until Eudoxus does there appear work which may be described as purely foundational in its intent. Through the examination of these problems, the present work will either alter or set in a new light virtually every standard thesis about the fourth-century Greek geometry. I. THE PRE-EUCLIDEAN THEORY OF INCOMMENSURABLE MAGNITUDES The Euclidean theory of incommensurable magnitudes, as preserved in Book X of the Elements, is a synthetic masterwork. Yet there are detect able seams in its structure, seams revealed both through terminology and through the historical clues provided by the neo-Platonist commentator Proclus.
Publisher: Springer Science & Business Media
ISBN: 9401017549
Category : Philosophy
Languages : en
Pages : 389
Book Description
The present work has three principal objectives: (1) to fix the chronology of the development of the pre-Euclidean theory of incommensurable magnitudes beginning from the first discoveries by fifth-century Pythago reans, advancing through the achievements of Theodorus of Cyrene, Theaetetus, Archytas and Eudoxus, and culminating in the formal theory of Elements X; (2) to correlate the stages of this developing theory with the evolution of the Elements as a whole; and (3) to establish that the high standards of rigor characteristic of this evolution were intrinsic to the mathematicians' work. In this third point, we wish to counterbalance a prevalent thesis that the impulse toward mathematical rigor was purely a response to the dialecticians' critique of foundations; on the contrary, we shall see that not until Eudoxus does there appear work which may be described as purely foundational in its intent. Through the examination of these problems, the present work will either alter or set in a new light virtually every standard thesis about the fourth-century Greek geometry. I. THE PRE-EUCLIDEAN THEORY OF INCOMMENSURABLE MAGNITUDES The Euclidean theory of incommensurable magnitudes, as preserved in Book X of the Elements, is a synthetic masterwork. Yet there are detect able seams in its structure, seams revealed both through terminology and through the historical clues provided by the neo-Platonist commentator Proclus.
Euclid's Elements
Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Encounters with Euclid
Author: Benjamin Wardhaugh
Publisher: Princeton University Press
ISBN: 0691235767
Category : Mathematics
Languages : en
Pages : 416
Book Description
A sweeping cultural history of one of the most influential mathematical books ever written Euclid's Elements of Geometry is one of the fountainheads of mathematics—and of culture. Written around 300 BCE, it has traveled widely across the centuries, generating countless new ideas and inspiring such figures as Isaac Newton, Bertrand Russell, Abraham Lincoln, and Albert Einstein. Encounters with Euclid tells the story of this incomparable mathematical masterpiece, taking readers from its origins in the ancient world to its continuing influence today. In this lively and informative book, Benjamin Wardhaugh explains how Euclid’s text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space. Encounters with Euclid traces the life and afterlives of one of the most remarkable works of mathematics ever written, revealing its lasting role in the timeless search for order and reason in an unruly world.
Publisher: Princeton University Press
ISBN: 0691235767
Category : Mathematics
Languages : en
Pages : 416
Book Description
A sweeping cultural history of one of the most influential mathematical books ever written Euclid's Elements of Geometry is one of the fountainheads of mathematics—and of culture. Written around 300 BCE, it has traveled widely across the centuries, generating countless new ideas and inspiring such figures as Isaac Newton, Bertrand Russell, Abraham Lincoln, and Albert Einstein. Encounters with Euclid tells the story of this incomparable mathematical masterpiece, taking readers from its origins in the ancient world to its continuing influence today. In this lively and informative book, Benjamin Wardhaugh explains how Euclid’s text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space. Encounters with Euclid traces the life and afterlives of one of the most remarkable works of mathematics ever written, revealing its lasting role in the timeless search for order and reason in an unruly world.
The Elements
Author: Euclid
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 558
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 558
Book Description
Euclid's Window
Author: Leonard Mlodinow
Publisher: Simon and Schuster
ISBN: 1439135371
Category : Science
Languages : en
Pages : 326
Book Description
Through Euclid's Window Leonard Mlodinow brilliantly and delightfully leads us on a journey through five revolutions in geometry, from the Greek concept of parallel lines to the latest notions of hyperspace. Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.
Publisher: Simon and Schuster
ISBN: 1439135371
Category : Science
Languages : en
Pages : 326
Book Description
Through Euclid's Window Leonard Mlodinow brilliantly and delightfully leads us on a journey through five revolutions in geometry, from the Greek concept of parallel lines to the latest notions of hyperspace. Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.
The Thirteen Books of Euclid's Elements
Author: Euclid
Publisher: Createspace Independent Publishing Platform
ISBN: 9781546376675
Category :
Languages : en
Pages : 448
Book Description
Euclid's Elements is a mathematical and geometric treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt circa 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems, including the problem of finding the square root of a number. Elements is the second-oldest extant Greek mathematical treatise after Autolycus' On the Moving Sphere, and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. According to Proclus, the term "element" was used to describe a theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' in the Greek language is the same as 'letter'. This suggests that theorems in the Elements should be seen as standing in the same relation to geometry as letters to language. Later commentators give a slightly different meaning to the term element, emphasizing how the propositions have progressed in small steps, and continued to build on previous propositions in a well-defined order.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781546376675
Category :
Languages : en
Pages : 448
Book Description
Euclid's Elements is a mathematical and geometric treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt circa 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems, including the problem of finding the square root of a number. Elements is the second-oldest extant Greek mathematical treatise after Autolycus' On the Moving Sphere, and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. According to Proclus, the term "element" was used to describe a theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' in the Greek language is the same as 'letter'. This suggests that theorems in the Elements should be seen as standing in the same relation to geometry as letters to language. Later commentators give a slightly different meaning to the term element, emphasizing how the propositions have progressed in small steps, and continued to build on previous propositions in a well-defined order.
Evolution of Mathematical Concepts
Author: Raymond L. Wilder
Publisher: Courier Corporation
ISBN: 0486490610
Category : Mathematics
Languages : en
Pages : 242
Book Description
Accessible to students and relevant to specialists, this remarkable book by a prominent educator offers a unique perspective on the evolutionary development of mathematics. Rather than conducting a survey of the history or philosophy of mathematics, Raymond L. Wilder envisions mathematics as a broad cultural phenomenon. His treatment examines and illustrates how such concepts as number and length were affected by historic and social events. Starting with a brief consideration of preliminary notions, this study explores the early evolution of numbers, the evolution of geometry, and the conquest of the infinite as embodied by real numbers. A detailed look at the processes of evolution concludes with an examination of the evolutionary aspects of modern mathematics.
Publisher: Courier Corporation
ISBN: 0486490610
Category : Mathematics
Languages : en
Pages : 242
Book Description
Accessible to students and relevant to specialists, this remarkable book by a prominent educator offers a unique perspective on the evolutionary development of mathematics. Rather than conducting a survey of the history or philosophy of mathematics, Raymond L. Wilder envisions mathematics as a broad cultural phenomenon. His treatment examines and illustrates how such concepts as number and length were affected by historic and social events. Starting with a brief consideration of preliminary notions, this study explores the early evolution of numbers, the evolution of geometry, and the conquest of the infinite as embodied by real numbers. A detailed look at the processes of evolution concludes with an examination of the evolutionary aspects of modern mathematics.
Measurement
Author: Paul Lockhart
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 268
Book Description
Paul Lockhart’s Mathematician’s Lament outlined how we introduce math to students in the wrong way. Measurement explains how math should be done. With plain English and pictures, Lockhart makes complex ideas about shape and motion intuitive and graspable, and offers a solution to math phobia by introducing us to math as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 268
Book Description
Paul Lockhart’s Mathematician’s Lament outlined how we introduce math to students in the wrong way. Measurement explains how math should be done. With plain English and pictures, Lockhart makes complex ideas about shape and motion intuitive and graspable, and offers a solution to math phobia by introducing us to math as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
Geometry
Author: John Tabak
Publisher: Infobase Publishing
ISBN: 0816068763
Category : Electronic books
Languages : en
Pages : 241
Book Description
Greek ideas about geometry, straight-edge and compass constructions, and the nature of mathematical proof dominated mathematical thought for about 2,000 years.
Publisher: Infobase Publishing
ISBN: 0816068763
Category : Electronic books
Languages : en
Pages : 241
Book Description
Greek ideas about geometry, straight-edge and compass constructions, and the nature of mathematical proof dominated mathematical thought for about 2,000 years.