The Entrainment and Mixing of a Round Buoyant Turbulent Jet in Crossflow

The Entrainment and Mixing of a Round Buoyant Turbulent Jet in Crossflow PDF Author: David Charles Thoman
Publisher:
ISBN:
Category :
Languages : en
Pages : 622

Get Book Here

Book Description

The Entrainment and Mixing of a Round Buoyant Turbulent Jet in Crossflow

The Entrainment and Mixing of a Round Buoyant Turbulent Jet in Crossflow PDF Author: David Charles Thoman
Publisher:
ISBN:
Category :
Languages : en
Pages : 622

Get Book Here

Book Description


The Entrainment and Mixing of a Round Buoyant Turbulent Jet in Cross-flow

The Entrainment and Mixing of a Round Buoyant Turbulent Jet in Cross-flow PDF Author: David Charles Thoman (Jr)
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis summaries the results of an experimental investigation of the near-field behavior and physics of the round buoyant turbulent jet in crossflow. In particular, the study centers on the physics associated with entrainment and mixing phenomena of the jet with the goal of better understanding the trends of trajectory and dilution behavior. The experiments involved a downward discharge of cold nitrogen gas (at about $-$85$spcirc$C) from a cylindrical structure placed in a wind tunnel of horizontally flowing ambient air. The jet was mapped using thermocouple measurements. For the purpose of studying jet/crossflow and jet/wake interactions, fog-oil smoke was used to mark parcels of fluid in the crossflow upstream of the jet and in the wake flow downstream of the discharge structure. Time-averaged, smoke concentrations were gathered through an aspirated sampling probe in conjunction with a calibrated, optical aerosol monitor. Smoke distributions were also photographed. Experiments were performed for four different values for the crossflow-to-exit velocity ratio k, namely, k = 0.7, 1.3, 2.1, and 3.5. The results of the experiments yield a comprehensive picture of the near-field flow patterns, flow interactions, and flow-transport physics for a buoyant jet in crossflow. Key, phenomenologically distinct zones of flow which comprise the near-exit structure of the jet are identified. The flow patterns within these zones, and thus the structure of the near-exit jet, are found to be extremely dependent on the value of the velocity ratio. Flow interactions in this region establish flow patterns which have a pronounced influence on the downstream development of the jet. A method is developed to fully document the trajectory and dilution behavior of the jet with the key parameters of influence. Trajectory and dilution are found to correlate with two parameters, namely, the velocity ratio and the density-difference ratio. Finally, unsteady, large-scale mixing motions within the near-exit flow zones are documented. Distinct modes of large-scale mixing which are responsible for the rapid and extensive dispersion observed in the jet are revealed by this study.

Turbulent Jets and Plumes

Turbulent Jets and Plumes PDF Author: Joseph Hun-wei Lee
Publisher: Springer Science & Business Media
ISBN: 1461504074
Category : Science
Languages : en
Pages : 391

Get Book Here

Book Description
Jets and plumes are shear flows produced by momentum and buoyancy forces. Examples include smokestack emissions, fires and volcano eruptions, deep sea vents, thermals, sewage discharges, thermal effluents from power stations, and ocean dumping of sludge. Knowledge of turbulent mixing by jets and plumes is important for environmental control, impact and risk assessment. Turbulent Jets and Plumes introduces the fundamental concepts and develops a Lagrangian approach to model these shear flows. This theme persists throughout the text, starting from simple cases and building towards the practically important case of a turbulent buoyant jet in a density-stratified crossflow. Basic ideas are illustrated by ample use of flow visualization using the laser-induced fluorescence technique. The text includes many illustrative worked examples, comparisons of model predictions with laboratory and field data, and classroom tested problems. An interactive PC-based virtual-reality modelling software (VISJET) is also provided. Engineering and science students, researchers and practitioners may use the book both as an introduction to the subject and as a reference in hydraulics and environmental fluid mechanics.

Volcanic Plumes

Volcanic Plumes PDF Author: R. S. J. Sparks
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 608

Get Book Here

Book Description
Volcanic plumes, made up of material that has explosively erupted from a volcano, are of fundamental importance to volcanology because their deposits record the past activity of a volcano. They also pose a wide range of hazards to humans and can have significant environmental effects. This book integrates observation, theory, and experimental studies and contains recent research ideas and results.

Analysis of Round, Turbulent, Buoyant Jets Discharged to Flowing Stratified Ambients

Analysis of Round, Turbulent, Buoyant Jets Discharged to Flowing Stratified Ambients PDF Author: Eric Hirst
Publisher:
ISBN:
Category : Electric power-plants
Languages : en
Pages : 48

Get Book Here

Book Description


Behavior of a Swirling Buoyant Turbulent Jet in a Cross Flow

Behavior of a Swirling Buoyant Turbulent Jet in a Cross Flow PDF Author: Suresh Viswanathan
Publisher:
ISBN:
Category : Hydrodynamics
Languages : en
Pages : 150

Get Book Here

Book Description


Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes

Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes PDF Author: P.A. Davies
Publisher: Springer
ISBN: 0792326997
Category : Science
Languages : en
Pages : 514

Get Book Here

Book Description
Challenging problems involvrllg jet and plume phenomena are common to many areas of fundamental and applied scientific research, and an understanding of plume and jet behaviour is essential in many geophysical and industrial contexts. For example, in the field of meteorology, where pollutant dispersal takes place by means of atmospheric jets and plumes formed either naturally under conditions of convectively-driven flow in the atmospheric boundary layer, or anthropogenically by the release of pollutants from tall chimneys. In other fields of geophysics, buoyant plumes and jets are known to play important roles in oceanic mixing processes, both at the relatively large scale (as in deep water formation by convective sinking) and at the relatively small scale (as with plume formation beneath ice leads, for example). In the industrial context, the performances of many engineering systems are determined primarily by the behaviour of buoyant plumes and jets. For example, (i) in sea outfalls, where either sewage or thermal effluents are discharged into marine and/or freshwater environments, (ii) in solar ponds, where buoyant jets are released under density interfaces, (iii) in buildings, where thermally-generated plumes affect the air quality and ventilation properties of architectural environments, (iv) in rotating machinery where fluid jet~ are used for cooling purposes, and (v) in long road and rail tunnels, where safety and ventilation prcedures rely upon an understanding of the behaviour of buoyant jets. In many other engineering and oceanographic contexts, the properties of jets and plumes are of great importance.

MIXING OF A TURBULENT JET IN A TURBULENT CROSS FLOW.

MIXING OF A TURBULENT JET IN A TURBULENT CROSS FLOW. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Get Book Here

Book Description


Entrainment Processes for a Jet in Cross-Flow

Entrainment Processes for a Jet in Cross-Flow PDF Author:
Publisher:
ISBN:
Category : Jets
Languages : en
Pages : 193

Get Book Here

Book Description
A jet in cross flow (JICF) is examined experimentally by injecting a stream of air into crossing fluid with an aim into quantifying entrainment process and downstream evolution. The behavior of JICF is important to fields ranging from turbine-blade cooling to smokestack pollution and volcanic eruption dynamics. Existing simplified volcanic plume models are tested; most importantly, the near-field contributions of complex interconnected vortex systems, which present significant uncertainties because they assume negligible turbulence. While jets in irrotational cross-flow have been investigated, this analysis has focused on the interaction between a turbulent jet in low and highly turbulent cross-flow created by an active grid. Instantaneous velocity fields were collected over seven planes using particle image velocimetry (PIV). A center-plane (x-y) and six planes parallel to the floor (x-z) highlight the interaction and resulting vortex systems. Various jet-to-cross-flow velocity ratios, Rv, were collected for each plane, which allow for computation of mean statistics and Reynolds stresses. Analysis was focused in five stages: a) identification of differences in the development of the jet across various inflow conditions, b) analysis of the vortex systems through transport and critical points analysis, c) decomposition of the flow structures to identify and remove the highest-order contributions to turbulence kinetic energy and d) extraction of reduced order modeling closure terms and e) optimization of closure terms for the simplified one-dimensional model, Plumeria. These five stages provided a comprehensive description of the role of cross-flow turbulence on the development of JICF. Noteworthy findings include significant changes in wake recovery and the near-wake recirculation region that impacted near-field entrainment; increased entrainment for high cross-flow turbulence after the collapse of the potential core due to increased engulfment and viscous nibbling between turbulent fluids; the presence of shear layer and wake vortices through critical point analysis; and the absence of entrainment and shear layer expansion near the exit. Most importantly, the negligible entrainment near the exit and impact of small scale turbulent features that must be included for any specific model to yield reasonable predictions is highlighted. By laying the foundation for a more nuanced approach to JICF, it is possible to more precisely summarize the complex features observed in this work through simplified descriptions that can be of benefit to both engineering design and geophysical modeling.

Analysis of the Injection of a Heated Turbulent Jet Into a Cross Flow

Analysis of the Injection of a Heated Turbulent Jet Into a Cross Flow PDF Author: James Franklin Campbell
Publisher:
ISBN:
Category : Jets
Languages : en
Pages : 70

Get Book Here

Book Description
An investigation has been undertaken to develop a theoretical model of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three- dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations (a number of previous studies assume a specific growth for the area). Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.