Author: Harald Fritzsch
Publisher:
ISBN: 9780231118200
Category : Science
Languages : en
Pages : 341
Book Description
The internationally renowned physicist Harald Fritzsch deftly explains the meaning and far-flung implications of the general theory of relativity and other mysteries of modern physics by presenting an imaginary conversation among Newton, Einstein, and a fictitious contemporary particle physicist named Adrian Haller. In this entertaining and involving account of relativity, Newton serves as the skeptic and asks the questions a modern reader might ask. Einstein himself does the explaining, while Haller explains the new developments that have occurred since the general theory was proposed.
The Curvature of Spacetime
Author: Harald Fritzsch
Publisher:
ISBN: 9780231118200
Category : Science
Languages : en
Pages : 341
Book Description
The internationally renowned physicist Harald Fritzsch deftly explains the meaning and far-flung implications of the general theory of relativity and other mysteries of modern physics by presenting an imaginary conversation among Newton, Einstein, and a fictitious contemporary particle physicist named Adrian Haller. In this entertaining and involving account of relativity, Newton serves as the skeptic and asks the questions a modern reader might ask. Einstein himself does the explaining, while Haller explains the new developments that have occurred since the general theory was proposed.
Publisher:
ISBN: 9780231118200
Category : Science
Languages : en
Pages : 341
Book Description
The internationally renowned physicist Harald Fritzsch deftly explains the meaning and far-flung implications of the general theory of relativity and other mysteries of modern physics by presenting an imaginary conversation among Newton, Einstein, and a fictitious contemporary particle physicist named Adrian Haller. In this entertaining and involving account of relativity, Newton serves as the skeptic and asks the questions a modern reader might ask. Einstein himself does the explaining, while Haller explains the new developments that have occurred since the general theory was proposed.
The Wave Equation on a Curved Space-Time
Author: F. G. Friedlander
Publisher: Cambridge University Press
ISBN: 0521205670
Category : Science
Languages : en
Pages : 298
Book Description
This book gives a rigourous discussion of the local effects of curvature on the behaviour of waves. In the course of this discussion many techniques are developed which are also needed for a study of more general problems, in which the gravitational field itself plays a dynamical role.
Publisher: Cambridge University Press
ISBN: 0521205670
Category : Science
Languages : en
Pages : 298
Book Description
This book gives a rigourous discussion of the local effects of curvature on the behaviour of waves. In the course of this discussion many techniques are developed which are also needed for a study of more general problems, in which the gravitational field itself plays a dynamical role.
The Geometry of Spacetime
Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Curvature of Space and Time, with an Introduction to Geometric Analysis
Author: Iva Stavrov
Publisher: American Mathematical Soc.
ISBN: 1470456281
Category : Education
Languages : en
Pages : 259
Book Description
This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.
Publisher: American Mathematical Soc.
ISBN: 1470456281
Category : Education
Languages : en
Pages : 259
Book Description
This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.
Spacetime and Geometry
Author: Sean M. Carroll
Publisher: Cambridge University Press
ISBN: 1108488390
Category : Science
Languages : en
Pages : 529
Book Description
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
Publisher: Cambridge University Press
ISBN: 1108488390
Category : Science
Languages : en
Pages : 529
Book Description
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
The Large Scale Structure of Space-Time
Author: S. W. Hawking
Publisher: Cambridge University Press
ISBN: 1139810952
Category : Science
Languages : en
Pages : 406
Book Description
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
Publisher: Cambridge University Press
ISBN: 1139810952
Category : Science
Languages : en
Pages : 406
Book Description
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
Gravitational Curvature
Author: Theodore Frankel
Publisher: Courier Corporation
ISBN: 048628915X
Category : Science
Languages : en
Pages : 194
Book Description
This classic text and reference monograph applies modern differential geometry to general relativity. A brief mathematical introduction to gravitational curvature, it emphasizes the subject's geometric essence and stresses the global aspects of cosmology. Suitable for independent study as well as for courses in differential geometry, relativity, and cosmology. 1979 edition.
Publisher: Courier Corporation
ISBN: 048628915X
Category : Science
Languages : en
Pages : 194
Book Description
This classic text and reference monograph applies modern differential geometry to general relativity. A brief mathematical introduction to gravitational curvature, it emphasizes the subject's geometric essence and stresses the global aspects of cosmology. Suitable for independent study as well as for courses in differential geometry, relativity, and cosmology. 1979 edition.
Flat and Curved Space-times
Author: George Francis Rayner Ellis
Publisher: Clarendon Press
ISBN: 9780198506560
Category : Mathematics
Languages : en
Pages : 394
Book Description
This text explains special relativity and the basics of general relativity from a geometric viewpoint. Space-time geometry is emphasised throughout, and up-to-date information is provided on black holes, gravitational collapse, and cosmology.
Publisher: Clarendon Press
ISBN: 9780198506560
Category : Mathematics
Languages : en
Pages : 394
Book Description
This text explains special relativity and the basics of general relativity from a geometric viewpoint. Space-time geometry is emphasised throughout, and up-to-date information is provided on black holes, gravitational collapse, and cosmology.
The Biggest Ideas in the Universe
Author: Sean Carroll
Publisher: Penguin
ISBN: 0593186583
Category : Science
Languages : en
Pages : 305
Book Description
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
Publisher: Penguin
ISBN: 0593186583
Category : Science
Languages : en
Pages : 305
Book Description
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
Aspects of Quantum Field Theory in Curved Spacetime
Author: Stephen A. Fulling
Publisher: Cambridge University Press
ISBN: 9780521377683
Category : Mathematics
Languages : en
Pages : 332
Book Description
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. This book provides, for mathematicians, an introduction to this field of physics in a language and from a viewpoint which such a reader should find congenial. Physicists should also gain from reading this book a sound grasp of various aspects of the theory, some of which have not been particularly emphasised in the existing review literature. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the 'Klein' paradox, particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalisation of the stress tensor. The style is pedagogic rather than formal; some knowledge of general relativity and differential geometry is assumed, but the author does supply background material on functional analysis and quantum field theory as required. The book arose from a course taught to graduate students and could be used for self-study or for advanced courses in relativity and quantum field theory.
Publisher: Cambridge University Press
ISBN: 9780521377683
Category : Mathematics
Languages : en
Pages : 332
Book Description
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. This book provides, for mathematicians, an introduction to this field of physics in a language and from a viewpoint which such a reader should find congenial. Physicists should also gain from reading this book a sound grasp of various aspects of the theory, some of which have not been particularly emphasised in the existing review literature. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the 'Klein' paradox, particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalisation of the stress tensor. The style is pedagogic rather than formal; some knowledge of general relativity and differential geometry is assumed, but the author does supply background material on functional analysis and quantum field theory as required. The book arose from a course taught to graduate students and could be used for self-study or for advanced courses in relativity and quantum field theory.