The Courant–Friedrichs–Lewy (CFL) Condition

The Courant–Friedrichs–Lewy (CFL) Condition PDF Author: Carlos A. de Moura
Publisher: Springer Science & Business Media
ISBN: 0817683941
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This volume comprises a carefully selected collection of articles emerging from and pertinent to the 2010 CFL-80 conference in Rio de Janeiro, celebrating the 80th anniversary of the Courant-Friedrichs-Lewy (CFL) condition. A major result in the field of numerical analysis, the CFL condition has influenced the research of many important mathematicians over the past eight decades, and this work is meant to take stock of its most important and current applications. The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After its Discovery will be of interest to practicing mathematicians, engineers, physicists, and graduate students who work with numerical methods.

The Courant–Friedrichs–Lewy (CFL) Condition

The Courant–Friedrichs–Lewy (CFL) Condition PDF Author: Carlos A. de Moura
Publisher: Springer Science & Business Media
ISBN: 0817683941
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This volume comprises a carefully selected collection of articles emerging from and pertinent to the 2010 CFL-80 conference in Rio de Janeiro, celebrating the 80th anniversary of the Courant-Friedrichs-Lewy (CFL) condition. A major result in the field of numerical analysis, the CFL condition has influenced the research of many important mathematicians over the past eight decades, and this work is meant to take stock of its most important and current applications. The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After its Discovery will be of interest to practicing mathematicians, engineers, physicists, and graduate students who work with numerical methods.

Hans Lewy Selecta

Hans Lewy Selecta PDF Author: Hans Lewy
Publisher: Springer Science & Business Media
ISBN: 9780817635237
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
The work of Hans Lewy (1904--1988) has had a profound influence in the direction of applied mathematics and partial differential equations, in particular, from the late 1920s. Two of the particulars are well known. The Courant--Friedrichs--Lewy condition (1928), or CFL condition, was devised to obtain existence and approximation results. This condition, relating the time and spatial discretizations for finite difference schemes, is now universally employed in the simulation of solutions of equations describing propagation phenomena. Lewy's example of a linear equation with no solution (1957), with its attendant consequence that most equations have no solution, was not merely an unexpected fact, but changed the viewpoint of the entire field. Lewy made pivotal contributions in many other areas, for example, the regularity theory of elliptic equations and systems, the Monge--Ampère Equation, the Minkowski Problem, the asymptotic analysis of boundary value problems, and several complex variables. He was among the first to study variational inequalities. In much of his work, his underlying philosophy was that simple tools of function theory could help one understand the essential concepts embedded in an issue, although at a cost in generality. This approach was extremely successful. In this two-volume work, most all of Lewy's papers are presented, in chronological order. They are preceded by several short essays about Lewy himself, prepared by Helen Lewy, Constance Reid, and David Kinderlehrer, and commentaries on his work by Erhard Heinz, Peter Lax, Jean Leray, Richard MacCamy, François Treves, and Louis Nirenberg. Additionally, there are Lewy's own remarks on the occasion of his honorary degree from the University of Bonn.

Computational Gasdynamics

Computational Gasdynamics PDF Author: Culbert B. Laney
Publisher: Cambridge University Press
ISBN: 1107393604
Category : Technology & Engineering
Languages : en
Pages : 631

Get Book Here

Book Description
Numerical methods are indispensable tools in the analysis of complex fluid flows. This book focuses on computational techniques for high-speed gas flows, especially gas flows containing shocks and other steep gradients. The book decomposes complicated numerical methods into simple modular parts, showing how each part fits and how each method relates to or differs from others. The text begins with a review of gasdynamics and computational techniques. Next come basic principles of computational gasdynamics. The last two parts cover basic techniques and advanced techniques. Senior and graduate level students, especially in aerospace engineering, as well as researchers and practising engineers, will find a wealth of invaluable information on high-speed gas flows in this text.

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws PDF Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

On the Partial Difference Equations, of Mathematical Physics

On the Partial Difference Equations, of Mathematical Physics PDF Author: Richard Courant
Publisher:
ISBN: 9780243620753
Category :
Languages : en
Pages :

Get Book Here

Book Description


Numerical Methods for Fluid Dynamics

Numerical Methods for Fluid Dynamics PDF Author: Dale R. Durran
Publisher: Springer Science & Business Media
ISBN: 1441964126
Category : Mathematics
Languages : en
Pages : 527

Get Book Here

Book Description
This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws PDF Author: Jan S. Hesthaven
Publisher: SIAM
ISBN: 1611975107
Category : Science
Languages : en
Pages : 571

Get Book Here

Book Description
Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.

Physical Processes in Clouds and Cloud Modeling

Physical Processes in Clouds and Cloud Modeling PDF Author: Alexander P. Khain
Publisher: Cambridge University Press
ISBN: 0521767431
Category : Nature
Languages : en
Pages : 643

Get Book Here

Book Description
Provides a comprehensive analysis of modern theories of cloud microphysical processes and their representation in numerical cloud models.

Modeling of Atmospheric Chemistry

Modeling of Atmospheric Chemistry PDF Author: Guy P. Brasseur
Publisher: Cambridge University Press
ISBN: 1108210953
Category : Science
Languages : en
Pages : 631

Get Book Here

Book Description
Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.

Condition

Condition PDF Author: Peter Bürgisser
Publisher: Springer Science & Business Media
ISBN: 3642388965
Category : Computers
Languages : en
Pages : 567

Get Book Here

Book Description
This book gathers threads that have evolved across different mathematical disciplines into seamless narrative. It deals with condition as a main aspect in the understanding of the performance ---regarding both stability and complexity--- of numerical algorithms. While the role of condition was shaped in the last half-century, so far there has not been a monograph treating this subject in a uniform and systematic way. The book puts special emphasis on the probabilistic analysis of numerical algorithms via the analysis of the corresponding condition. The exposition's level increases along the book, starting in the context of linear algebra at an undergraduate level and reaching in its third part the recent developments and partial solutions for Smale's 17th problem which can be explained within a graduate course. Its middle part contains a condition-based course on linear programming that fills a gap between the current elementary expositions of the subject based on the simplex method and those focusing on convex programming.