Author: Pascal Chossat
Publisher: Springer Science & Business Media
ISBN: 1461243009
Category : Mathematics
Languages : en
Pages : 239
Book Description
1. 1 A paradigm About one hundred years ago, Maurice Couette, a French physicist, de signed an apparatus consisting of two coaxial cylinders, the space between the cylinders being filled with a viscous fluid and the outer cylinder being rotated at angular velocity O2. The purpose of this experiment was, follow ing an idea of the Austrian physicist Max Margules, to deduce the viscosity of the fluid from measurements of the torque exerted by the fluid on the inner cylinder (the fluid is assumed to adhere to the walls of the cylinders). At least when O is not too large, the fluid flow is nearly laminar and 2 the method of Couette is valuable because the torque is then proportional to 110 , where II is the kinematic viscosity of the fluid. If, however, O is 2 2 increased to a very large value, the flow becomes eventually turbulent. A few years later, Arnulph Mallock designed a similar apparatus but allowed the inner cylinder to rotate with angular velocity 01, while O2 = o. The surprise was that the laminar flow, now known as the Couette flow, was not observable when 0 exceeded a certain "low" critical value Ole, even 1 though, as we shall see in Chapter II, it is a solution of the model equations for any values of 0 and O .
The Couette-Taylor Problem
Author: Pascal Chossat
Publisher: Springer Science & Business Media
ISBN: 1461243009
Category : Mathematics
Languages : en
Pages : 239
Book Description
1. 1 A paradigm About one hundred years ago, Maurice Couette, a French physicist, de signed an apparatus consisting of two coaxial cylinders, the space between the cylinders being filled with a viscous fluid and the outer cylinder being rotated at angular velocity O2. The purpose of this experiment was, follow ing an idea of the Austrian physicist Max Margules, to deduce the viscosity of the fluid from measurements of the torque exerted by the fluid on the inner cylinder (the fluid is assumed to adhere to the walls of the cylinders). At least when O is not too large, the fluid flow is nearly laminar and 2 the method of Couette is valuable because the torque is then proportional to 110 , where II is the kinematic viscosity of the fluid. If, however, O is 2 2 increased to a very large value, the flow becomes eventually turbulent. A few years later, Arnulph Mallock designed a similar apparatus but allowed the inner cylinder to rotate with angular velocity 01, while O2 = o. The surprise was that the laminar flow, now known as the Couette flow, was not observable when 0 exceeded a certain "low" critical value Ole, even 1 though, as we shall see in Chapter II, it is a solution of the model equations for any values of 0 and O .
Publisher: Springer Science & Business Media
ISBN: 1461243009
Category : Mathematics
Languages : en
Pages : 239
Book Description
1. 1 A paradigm About one hundred years ago, Maurice Couette, a French physicist, de signed an apparatus consisting of two coaxial cylinders, the space between the cylinders being filled with a viscous fluid and the outer cylinder being rotated at angular velocity O2. The purpose of this experiment was, follow ing an idea of the Austrian physicist Max Margules, to deduce the viscosity of the fluid from measurements of the torque exerted by the fluid on the inner cylinder (the fluid is assumed to adhere to the walls of the cylinders). At least when O is not too large, the fluid flow is nearly laminar and 2 the method of Couette is valuable because the torque is then proportional to 110 , where II is the kinematic viscosity of the fluid. If, however, O is 2 2 increased to a very large value, the flow becomes eventually turbulent. A few years later, Arnulph Mallock designed a similar apparatus but allowed the inner cylinder to rotate with angular velocity 01, while O2 = o. The surprise was that the laminar flow, now known as the Couette flow, was not observable when 0 exceeded a certain "low" critical value Ole, even 1 though, as we shall see in Chapter II, it is a solution of the model equations for any values of 0 and O .
The Couette-Taylor Problem
Author: Pascal Chossat
Publisher: Springer
ISBN: 9780387941547
Category : Mathematics
Languages : en
Pages : 234
Book Description
1. 1 A paradigm About one hundred years ago, Maurice Couette, a French physicist, de signed an apparatus consisting of two coaxial cylinders, the space between the cylinders being filled with a viscous fluid and the outer cylinder being rotated at angular velocity O2. The purpose of this experiment was, follow ing an idea of the Austrian physicist Max Margules, to deduce the viscosity of the fluid from measurements of the torque exerted by the fluid on the inner cylinder (the fluid is assumed to adhere to the walls of the cylinders). At least when O is not too large, the fluid flow is nearly laminar and 2 the method of Couette is valuable because the torque is then proportional to 110 , where II is the kinematic viscosity of the fluid. If, however, O is 2 2 increased to a very large value, the flow becomes eventually turbulent. A few years later, Arnulph Mallock designed a similar apparatus but allowed the inner cylinder to rotate with angular velocity 01, while O2 = o. The surprise was that the laminar flow, now known as the Couette flow, was not observable when 0 exceeded a certain "low" critical value Ole, even 1 though, as we shall see in Chapter II, it is a solution of the model equations for any values of 0 and O .
Publisher: Springer
ISBN: 9780387941547
Category : Mathematics
Languages : en
Pages : 234
Book Description
1. 1 A paradigm About one hundred years ago, Maurice Couette, a French physicist, de signed an apparatus consisting of two coaxial cylinders, the space between the cylinders being filled with a viscous fluid and the outer cylinder being rotated at angular velocity O2. The purpose of this experiment was, follow ing an idea of the Austrian physicist Max Margules, to deduce the viscosity of the fluid from measurements of the torque exerted by the fluid on the inner cylinder (the fluid is assumed to adhere to the walls of the cylinders). At least when O is not too large, the fluid flow is nearly laminar and 2 the method of Couette is valuable because the torque is then proportional to 110 , where II is the kinematic viscosity of the fluid. If, however, O is 2 2 increased to a very large value, the flow becomes eventually turbulent. A few years later, Arnulph Mallock designed a similar apparatus but allowed the inner cylinder to rotate with angular velocity 01, while O2 = o. The surprise was that the laminar flow, now known as the Couette flow, was not observable when 0 exceeded a certain "low" critical value Ole, even 1 though, as we shall see in Chapter II, it is a solution of the model equations for any values of 0 and O .
Ordered and Turbulent Patterns in Taylor-Couette Flow
Author: C. David Andereck
Publisher: Springer Science & Business Media
ISBN: 1461534380
Category : Science
Languages : en
Pages : 351
Book Description
Seldom does a physical system, particularly one as apparently simple as the flow of a Newtonian fluid between concentric rotating cylinders, retain the interest of scientists, applied mathematicians and engineers for very long. Yet, as this volume goes to press it has been nearly 70 years since G. I. Taylor's outstanding experimental and theoretical study of the linear stability of this flow was published, and a century since the first experiments were performed on rotating cylinder viscometers. Since then, the study of this system has progressed enormously, but new features of the flow patterns are still being uncovered. Interesting variations on the basic system abound. Connections with open flows are being made. More complex fluids are used in some experiments. The vigor of the research going on in this particular example of nonequilibrium systems was very apparent at the NATO Advanced Research Workshop on "Ordered and Turbulent Patterns in Taylor Couette Flow," held in Columbus, Ohio, USA May 22-24, 1991. A primary goal of this ARW was to bring together those interested in pattern formation in the classic Taylor Couette problem with those looking at variations on the basic system and with those interested in related systems, in order to better define the interesting areas for the future, the open questions, and the features common (and not common) to closed and open systems. This volume contains many of the contributions presented during the workshop.
Publisher: Springer Science & Business Media
ISBN: 1461534380
Category : Science
Languages : en
Pages : 351
Book Description
Seldom does a physical system, particularly one as apparently simple as the flow of a Newtonian fluid between concentric rotating cylinders, retain the interest of scientists, applied mathematicians and engineers for very long. Yet, as this volume goes to press it has been nearly 70 years since G. I. Taylor's outstanding experimental and theoretical study of the linear stability of this flow was published, and a century since the first experiments were performed on rotating cylinder viscometers. Since then, the study of this system has progressed enormously, but new features of the flow patterns are still being uncovered. Interesting variations on the basic system abound. Connections with open flows are being made. More complex fluids are used in some experiments. The vigor of the research going on in this particular example of nonequilibrium systems was very apparent at the NATO Advanced Research Workshop on "Ordered and Turbulent Patterns in Taylor Couette Flow," held in Columbus, Ohio, USA May 22-24, 1991. A primary goal of this ARW was to bring together those interested in pattern formation in the classic Taylor Couette problem with those looking at variations on the basic system and with those interested in related systems, in order to better define the interesting areas for the future, the open questions, and the features common (and not common) to closed and open systems. This volume contains many of the contributions presented during the workshop.
The Couette-Taylor Problem
Author: Pascal Chossat
Publisher:
ISBN: 9783540941545
Category : Fluid dynamics
Languages : en
Pages : 233
Book Description
Publisher:
ISBN: 9783540941545
Category : Fluid dynamics
Languages : en
Pages : 233
Book Description
Bénard Cells and Taylor Vortices
Author: E. L. Koschmieder
Publisher: Cambridge University Press
ISBN: 9780521402040
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book describes the motions resulting from heating a fluid layer from below.
Publisher: Cambridge University Press
ISBN: 9780521402040
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book describes the motions resulting from heating a fluid layer from below.
Mathematical Theory in Fluid Mechanics
Author: G P Galdi
Publisher: CRC Press
ISBN: 9780582298101
Category : Science
Languages : en
Pages : 148
Book Description
This volume consists of four contributions that are based on a series of lectures delivered by Jens Frehse. Konstantin Pikeckas, K.R. Rajagopal and Wolf von Wahl t the Fourth Winter School in Mathematical Theory in Fluid Mechanics, held in Paseky, Czech Republic, from December 3-9, 1995. In these papers the authors present the latest research and updated surveys of relevant topics in the various areas of theoretical fluid mechanics. Specifically, Frehse and Ruzicka study the question of the existence of a regular solution to Navier-Stokes equations in five dimensions by means of weighted estimates. Pileckas surveys recent results regarding the solvability of the Stokes and Navier-Stokes system in domains with outlets at infinity. K.R. Rajagopal presents an introduction to a continuum approach to mixture theory with the emphasis on the constitutive equation, boundary conditions and moving singular surface. Finally, Kaiser and von Wahl bring new results on stability of basic flow for the Taylor-Couette problem in the small-gap limit. This volume would be indicated for those in the fields of applied mathematicians, researchers in fluid mechanics and theoretical mechanics, and mechanical engineers.
Publisher: CRC Press
ISBN: 9780582298101
Category : Science
Languages : en
Pages : 148
Book Description
This volume consists of four contributions that are based on a series of lectures delivered by Jens Frehse. Konstantin Pikeckas, K.R. Rajagopal and Wolf von Wahl t the Fourth Winter School in Mathematical Theory in Fluid Mechanics, held in Paseky, Czech Republic, from December 3-9, 1995. In these papers the authors present the latest research and updated surveys of relevant topics in the various areas of theoretical fluid mechanics. Specifically, Frehse and Ruzicka study the question of the existence of a regular solution to Navier-Stokes equations in five dimensions by means of weighted estimates. Pileckas surveys recent results regarding the solvability of the Stokes and Navier-Stokes system in domains with outlets at infinity. K.R. Rajagopal presents an introduction to a continuum approach to mixture theory with the emphasis on the constitutive equation, boundary conditions and moving singular surface. Finally, Kaiser and von Wahl bring new results on stability of basic flow for the Taylor-Couette problem in the small-gap limit. This volume would be indicated for those in the fields of applied mathematicians, researchers in fluid mechanics and theoretical mechanics, and mechanical engineers.
Theory and Computation in Hydrodynamic Stability
Author: W. O. Criminale
Publisher: Cambridge University Press
ISBN: 1108475337
Category : Mathematics
Languages : en
Pages : 565
Book Description
Offers modern and numerical techniques for the stability of fluid flow with illustrations, an extensive bibliography, and exercises with solutions.
Publisher: Cambridge University Press
ISBN: 1108475337
Category : Mathematics
Languages : en
Pages : 565
Book Description
Offers modern and numerical techniques for the stability of fluid flow with illustrations, an extensive bibliography, and exercises with solutions.
Mechanical Design and Manufacturing of Electric Motors
Author: Wei Tong
Publisher: CRC Press
ISBN: 1000555046
Category : Technology & Engineering
Languages : en
Pages : 987
Book Description
1. Focuses on practical design and manufacturing process 2. Contains Industrial working experiences 3. Includes innovations in development of electric machines 4. Includes read-to-implement solutions in electric machine design 5. Discusses state-of-the-art technology in modern electric machine design
Publisher: CRC Press
ISBN: 1000555046
Category : Technology & Engineering
Languages : en
Pages : 987
Book Description
1. Focuses on practical design and manufacturing process 2. Contains Industrial working experiences 3. Includes innovations in development of electric machines 4. Includes read-to-implement solutions in electric machine design 5. Discusses state-of-the-art technology in modern electric machine design
Mathematics Applied to Fluid Mechanics and Stability
Author: Donald A. Drew
Publisher: SIAM
ISBN: 9780898712087
Category : Mathematics
Languages : en
Pages : 316
Book Description
Publisher: SIAM
ISBN: 9780898712087
Category : Mathematics
Languages : en
Pages : 316
Book Description
Advanced Fluid Mechanics
Author: William Graebel
Publisher: Academic Press
ISBN: 008054908X
Category : Science
Languages : en
Pages : 379
Book Description
Fluid mechanics is the study of how fluids behave and interact under various forces and in various applied situations, whether in liquid or gas state or both. The author of Advanced Fluid Mechanics compiles pertinent information that are introduced in the more advanced classes at the senior level and at the graduate level. "Advanced Fluid Mechanics courses typically cover a variety of topics involving fluids in various multiple states (phases), with both elastic and non-elastic qualities, and flowing in complex ways. This new text will integrate both the simple stages of fluid mechanics ("Fundamentals) with those involving more complex parameters, including Inviscid Flow in multi-dimensions, Viscous Flow and Turbulence, and a succinct introduction to Computational Fluid Dynamics. It will offer exceptional pedagogy, for both classroom use and self-instruction, including many worked-out examples, end-of-chapter problems, and actual computer programs that can be used to reinforce theory with real-world applications. Professional engineers as well as Physicists and Chemists working in the analysis of fluid behavior in complex systems will find the contents of this book useful. All manufacturing companies involved in any sort of systems that encompass fluids and fluid flow analysis (e.g., heat exchangers, air conditioning and refrigeration, chemical processes, etc.) or energy generation (steam boilers, turbines and internal combustion engines, jet propulsion systems, etc.), or fluid systems and fluid power (e.g., hydraulics, piping systems, and so on)will reap the benefits of this text. - Offers detailed derivation of fundamental equations for better comprehension of more advanced mathematical analysis - Provides groundwork for more advanced topics on boundary layer analysis, unsteady flow, turbulent modeling, and computational fluid dynamics - Includes worked-out examples and end-of-chapter problems as well as a companion web site with sample computational programs and Solutions Manual
Publisher: Academic Press
ISBN: 008054908X
Category : Science
Languages : en
Pages : 379
Book Description
Fluid mechanics is the study of how fluids behave and interact under various forces and in various applied situations, whether in liquid or gas state or both. The author of Advanced Fluid Mechanics compiles pertinent information that are introduced in the more advanced classes at the senior level and at the graduate level. "Advanced Fluid Mechanics courses typically cover a variety of topics involving fluids in various multiple states (phases), with both elastic and non-elastic qualities, and flowing in complex ways. This new text will integrate both the simple stages of fluid mechanics ("Fundamentals) with those involving more complex parameters, including Inviscid Flow in multi-dimensions, Viscous Flow and Turbulence, and a succinct introduction to Computational Fluid Dynamics. It will offer exceptional pedagogy, for both classroom use and self-instruction, including many worked-out examples, end-of-chapter problems, and actual computer programs that can be used to reinforce theory with real-world applications. Professional engineers as well as Physicists and Chemists working in the analysis of fluid behavior in complex systems will find the contents of this book useful. All manufacturing companies involved in any sort of systems that encompass fluids and fluid flow analysis (e.g., heat exchangers, air conditioning and refrigeration, chemical processes, etc.) or energy generation (steam boilers, turbines and internal combustion engines, jet propulsion systems, etc.), or fluid systems and fluid power (e.g., hydraulics, piping systems, and so on)will reap the benefits of this text. - Offers detailed derivation of fundamental equations for better comprehension of more advanced mathematical analysis - Provides groundwork for more advanced topics on boundary layer analysis, unsteady flow, turbulent modeling, and computational fluid dynamics - Includes worked-out examples and end-of-chapter problems as well as a companion web site with sample computational programs and Solutions Manual