Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
ISBN: 9780821803912
Category : Finite simple groups
Languages : en
Pages : 446
Book Description
Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR
The Classification of the Finite Simple Groups, Number 3
Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
ISBN: 9780821803912
Category : Finite simple groups
Languages : en
Pages : 446
Book Description
Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 9780821803912
Category : Finite simple groups
Languages : en
Pages : 446
Book Description
Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR
The Classification of Finite Simple Groups
Author: Michael Aschbacher
Publisher: American Mathematical Soc.
ISBN: 0821853368
Category : Mathematics
Languages : en
Pages : 362
Book Description
Provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the 'even case', where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of 'noncharacteristic 2 type'.
Publisher: American Mathematical Soc.
ISBN: 0821853368
Category : Mathematics
Languages : en
Pages : 362
Book Description
Provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the 'even case', where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of 'noncharacteristic 2 type'.
The Classification of the Finite Simple Groups, Number 9
Author: Inna Capdeboscq
Publisher: American Mathematical Society
ISBN: 1470464373
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book is the ninth volume in a series whose goal is to furnish a careful and largely self-contained proof of the classification theorem for the finite simple groups. Having completed the classification of the simple groups of odd type as well as the classification of the simple groups of generic even type (modulo uniqueness theorems to appear later), the current volume begins the classification of the finite simple groups of special even type. The principal result of this volume is a classification of the groups of bicharacteristic type, i.e., of both even type and of $p$-type for a suitable odd prime $p$. It is here that the largest sporadic groups emerge, namely the Monster, the Baby Monster, the largest Conway group, and the three Fischer groups, along with six finite groups of Lie type over small fields, several of which play a major role as subgroups or sections of these sporadic groups.
Publisher: American Mathematical Society
ISBN: 1470464373
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book is the ninth volume in a series whose goal is to furnish a careful and largely self-contained proof of the classification theorem for the finite simple groups. Having completed the classification of the simple groups of odd type as well as the classification of the simple groups of generic even type (modulo uniqueness theorems to appear later), the current volume begins the classification of the finite simple groups of special even type. The principal result of this volume is a classification of the groups of bicharacteristic type, i.e., of both even type and of $p$-type for a suitable odd prime $p$. It is here that the largest sporadic groups emerge, namely the Monster, the Baby Monster, the largest Conway group, and the three Fischer groups, along with six finite groups of Lie type over small fields, several of which play a major role as subgroups or sections of these sporadic groups.
Finite Simple Groups
Author: Daniel Gorenstein
Publisher: Springer Science & Business Media
ISBN: 1468484974
Category : Mathematics
Languages : en
Pages : 339
Book Description
In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in a single line, yet its proof required a full 255-page issue of the Pacific 10urnal of Mathematics [93]. Soon thereafter, in 1965, came the first new sporadic simple group in over 100 years, the Zvonimir Janko group 1 , to further stimulate the 1 'To make the book as self-contained as possible. we are including definitions of various terms as they occur in the text. However. in order not to disrupt the continuity of the discussion. we have placed them at the end of the Introduction. We denote these definitions by (DI). (D2), (D3). etc.
Publisher: Springer Science & Business Media
ISBN: 1468484974
Category : Mathematics
Languages : en
Pages : 339
Book Description
In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in a single line, yet its proof required a full 255-page issue of the Pacific 10urnal of Mathematics [93]. Soon thereafter, in 1965, came the first new sporadic simple group in over 100 years, the Zvonimir Janko group 1 , to further stimulate the 1 'To make the book as self-contained as possible. we are including definitions of various terms as they occur in the text. However. in order not to disrupt the continuity of the discussion. we have placed them at the end of the Introduction. We denote these definitions by (DI). (D2), (D3). etc.
The Finite Simple Groups
Author: Robert Wilson
Publisher: Springer Science & Business Media
ISBN: 1848009879
Category : Mathematics
Languages : en
Pages : 310
Book Description
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].
Publisher: Springer Science & Business Media
ISBN: 1848009879
Category : Mathematics
Languages : en
Pages : 310
Book Description
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].
The Classification of Finite Simple Groups
Author: Daniel Gorenstein
Publisher: Springer Science & Business Media
ISBN: 1461336856
Category : Mathematics
Languages : en
Pages : 493
Book Description
Never before in the history of mathematics has there been an individual theorem whose proof has required 10,000 journal pages of closely reasoned argument. Who could read such a proof, let alone communicate it to others? But the classification of all finite simple groups is such a theorem-its complete proof, developed over a 30-year period by about 100 group theorists, is the union of some 500 journal articles covering approximately 10,000 printed pages. How then is one who has lived through it all to convey the richness and variety of this monumental achievement? Yet such an attempt must be made, for without the existence of a coherent exposition of the total proof, there is a very real danger that it will gradually become lost to the living world of mathematics, buried within the dusty pages of forgotten journals. For it is almost impossible for the uninitiated to find the way through the tangled proof without an experienced guide; even the 500 papers themselves require careful selection from among some 2,000 articles on simple group theory, which together include often attractive byways, but which serve only to delay the journey.
Publisher: Springer Science & Business Media
ISBN: 1461336856
Category : Mathematics
Languages : en
Pages : 493
Book Description
Never before in the history of mathematics has there been an individual theorem whose proof has required 10,000 journal pages of closely reasoned argument. Who could read such a proof, let alone communicate it to others? But the classification of all finite simple groups is such a theorem-its complete proof, developed over a 30-year period by about 100 group theorists, is the union of some 500 journal articles covering approximately 10,000 printed pages. How then is one who has lived through it all to convey the richness and variety of this monumental achievement? Yet such an attempt must be made, for without the existence of a coherent exposition of the total proof, there is a very real danger that it will gradually become lost to the living world of mathematics, buried within the dusty pages of forgotten journals. For it is almost impossible for the uninitiated to find the way through the tangled proof without an experienced guide; even the 500 papers themselves require careful selection from among some 2,000 articles on simple group theory, which together include often attractive byways, but which serve only to delay the journey.
The Classification of the Finite Simple Groups, Number 8
Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
ISBN: 1470441896
Category : Mathematics
Languages : en
Pages : 506
Book Description
This book completes a trilogy (Numbers 5, 7, and 8) of the series The Classification of the Finite Simple Groups treating the generic case of the classification of the finite simple groups. In conjunction with Numbers 4 and 6, it allows us to reach a major milestone in our series—the completion of the proof of the following theorem: Theorem O: Let G be a finite simple group of odd type, all of whose proper simple sections are known simple groups. Then either G is an alternating group or G is a finite group of Lie type defined over a field of odd order or G is one of six sporadic simple groups. Put another way, Theorem O asserts that any minimal counterexample to the classification of the finite simple groups must be of even type. The work of Aschbacher and Smith shows that a minimal counterexample is not of quasithin even type, while this volume shows that a minimal counterexample cannot be of generic even type, modulo the treatment of certain intermediate configurations of even type which will be ruled out in the next volume of our series.
Publisher: American Mathematical Soc.
ISBN: 1470441896
Category : Mathematics
Languages : en
Pages : 506
Book Description
This book completes a trilogy (Numbers 5, 7, and 8) of the series The Classification of the Finite Simple Groups treating the generic case of the classification of the finite simple groups. In conjunction with Numbers 4 and 6, it allows us to reach a major milestone in our series—the completion of the proof of the following theorem: Theorem O: Let G be a finite simple group of odd type, all of whose proper simple sections are known simple groups. Then either G is an alternating group or G is a finite group of Lie type defined over a field of odd order or G is one of six sporadic simple groups. Put another way, Theorem O asserts that any minimal counterexample to the classification of the finite simple groups must be of even type. The work of Aschbacher and Smith shows that a minimal counterexample is not of quasithin even type, while this volume shows that a minimal counterexample cannot be of generic even type, modulo the treatment of certain intermediate configurations of even type which will be ruled out in the next volume of our series.
Theory of Groups of Finite Order
Author: William S. Burnside
Publisher: Courier Corporation
ISBN: 0486159442
Category : Mathematics
Languages : en
Pages : 545
Book Description
Classic 1911 edition covers many group-related properties, including an extensive treatment of permutation groups and groups of linear substitutions, along with graphic representation of groups, congruence groups, and special topics.
Publisher: Courier Corporation
ISBN: 0486159442
Category : Mathematics
Languages : en
Pages : 545
Book Description
Classic 1911 edition covers many group-related properties, including an extensive treatment of permutation groups and groups of linear substitutions, along with graphic representation of groups, congruence groups, and special topics.
The Subgroup Structure of the Finite Classical Groups
Author: Peter B. Kleidman
Publisher: Cambridge University Press
ISBN: 052135949X
Category : Mathematics
Languages : en
Pages : 317
Book Description
With the classification of the finite simple groups complete, much work has gone into the study of maximal subgroups of almost simple groups. In this volume the authors investigate the maximal subgroups of the finite classical groups and present research into these groups as well as proving many new results. In particular, the authors develop a unified treatment of the theory of the 'geometric subgroups' of the classical groups, introduced by Aschbacher, and they answer the questions of maximality and conjugacy and obtain the precise shapes of these groups. Both authors are experts in the field and the book will be of considerable value not only to group theorists, but also to combinatorialists and geometers interested in these techniques and results. Graduate students will find it a very readable introduction to the topic and it will bring them to the very forefront of research in group theory.
Publisher: Cambridge University Press
ISBN: 052135949X
Category : Mathematics
Languages : en
Pages : 317
Book Description
With the classification of the finite simple groups complete, much work has gone into the study of maximal subgroups of almost simple groups. In this volume the authors investigate the maximal subgroups of the finite classical groups and present research into these groups as well as proving many new results. In particular, the authors develop a unified treatment of the theory of the 'geometric subgroups' of the classical groups, introduced by Aschbacher, and they answer the questions of maximality and conjugacy and obtain the precise shapes of these groups. Both authors are experts in the field and the book will be of considerable value not only to group theorists, but also to combinatorialists and geometers interested in these techniques and results. Graduate students will find it a very readable introduction to the topic and it will bring them to the very forefront of research in group theory.
Character Theory of Finite Groups
Author: I. Martin Isaacs
Publisher: American Mathematical Soc.
ISBN: 0821842293
Category : Mathematics
Languages : en
Pages : 322
Book Description
Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite challenging. In addition to the development of the basic theory (using a cleaner notation than previously), a number of more specialized topics are covered with accessible presentations. These include projective representations, the basics of the Schur index, irreducible character degrees and group structure, complex linear groups, exceptional characters, and a fairly extensive introduction to blocks and Brauer characters. This is a corrected reprint of the original 1976 version, later reprinted by Dover. Since 1976 it has become the standard reference for character theory, appearing in the bibliography of almost every research paper in the subject. It is largely self-contained, requiring of the reader only the most basic facts of linear algebra, group theory, Galois theory and ring and module theory.
Publisher: American Mathematical Soc.
ISBN: 0821842293
Category : Mathematics
Languages : en
Pages : 322
Book Description
Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite challenging. In addition to the development of the basic theory (using a cleaner notation than previously), a number of more specialized topics are covered with accessible presentations. These include projective representations, the basics of the Schur index, irreducible character degrees and group structure, complex linear groups, exceptional characters, and a fairly extensive introduction to blocks and Brauer characters. This is a corrected reprint of the original 1976 version, later reprinted by Dover. Since 1976 it has become the standard reference for character theory, appearing in the bibliography of almost every research paper in the subject. It is largely self-contained, requiring of the reader only the most basic facts of linear algebra, group theory, Galois theory and ring and module theory.