Author: Adhemar Bultheel
Publisher: World Scientific
ISBN: 981283625X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The 1947 paper by John von Neumann & Herman Goldstine, 'Numerical Inverting of Matrices of High Order', is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book collects contributions by researchers who have lived through this evolution.
The Birth of Numerical Analysis
Author: Adhemar Bultheel
Publisher: World Scientific
ISBN: 981283625X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The 1947 paper by John von Neumann & Herman Goldstine, 'Numerical Inverting of Matrices of High Order', is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book collects contributions by researchers who have lived through this evolution.
Publisher: World Scientific
ISBN: 981283625X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The 1947 paper by John von Neumann & Herman Goldstine, 'Numerical Inverting of Matrices of High Order', is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book collects contributions by researchers who have lived through this evolution.
Theory and Applications of Numerical Analysis
Author: G. M. Phillips
Publisher: Elsevier
ISBN: 0080519121
Category : Mathematics
Languages : en
Pages : 461
Book Description
Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included. - a unique blend of theory and applications - two brand new chapters on eigenvalues and splines - inclusion of formal algorithms - numerous fully worked examples - a large number of problems, many with solutions
Publisher: Elsevier
ISBN: 0080519121
Category : Mathematics
Languages : en
Pages : 461
Book Description
Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included. - a unique blend of theory and applications - two brand new chapters on eigenvalues and splines - inclusion of formal algorithms - numerous fully worked examples - a large number of problems, many with solutions
Numerical Analysis
Author: Larkin Ridgway Scott
Publisher: Princeton University Press
ISBN: 1400838967
Category : Mathematics
Languages : en
Pages : 342
Book Description
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that exist in current textbooks. For example, both necessary and sufficient conditions for convergence of basic iterative methods are covered, and proofs are given in full generality, not just based on special cases. The book is accessible to undergraduate mathematics majors as well as computational scientists wanting to learn the foundations of the subject. Presents the mathematical foundations of numerical analysis Explains the mathematical details behind simulation software Introduces many advanced concepts in modern analysis Self-contained and mathematically rigorous Contains problems and solutions in each chapter Excellent follow-up course to Principles of Mathematical Analysis by Rudin
Publisher: Princeton University Press
ISBN: 1400838967
Category : Mathematics
Languages : en
Pages : 342
Book Description
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that exist in current textbooks. For example, both necessary and sufficient conditions for convergence of basic iterative methods are covered, and proofs are given in full generality, not just based on special cases. The book is accessible to undergraduate mathematics majors as well as computational scientists wanting to learn the foundations of the subject. Presents the mathematical foundations of numerical analysis Explains the mathematical details behind simulation software Introduces many advanced concepts in modern analysis Self-contained and mathematically rigorous Contains problems and solutions in each chapter Excellent follow-up course to Principles of Mathematical Analysis by Rudin
A History of Numerical Analysis from the 16th through the 19th Century
Author: H. H. Goldstine
Publisher: Springer Science & Business Media
ISBN: 1468494724
Category : Mathematics
Languages : en
Pages : 361
Book Description
In this book I have attempted to trace the development of numerical analysis during the period in which the foundations of the modern theory were being laid. To do this I have had to exercise a certain amount of selectivity in choosing and in rejecting both authors and papers. I have rather arbitrarily chosen, in the main, the most famous mathematicians of the period in question and have concentrated on their major works in numerical analysis at the expense, perhaps, of other lesser known but capable analysts. This selectivity results from the need to choose from a large body of literature, and from my feeling that almost by definition the great masters of mathematics were the ones responsible for the most significant accomplishments. In any event I must accept full responsibility for the choices. I would particularly like to acknowledge my thanks to Professor Otto Neugebauer for his help and inspiration in the preparation of this book. This consisted of many friendly discussions that I will always value. I should also like to express my deep appreciation to the International Business Machines Corporation of which I have the honor of being a Fellow and in particular to Dr. Ralph E. Gomory, its Vice-President for Research, for permitting me to undertake the writing of this book and for helping make it possible by his continuing encouragement and support.
Publisher: Springer Science & Business Media
ISBN: 1468494724
Category : Mathematics
Languages : en
Pages : 361
Book Description
In this book I have attempted to trace the development of numerical analysis during the period in which the foundations of the modern theory were being laid. To do this I have had to exercise a certain amount of selectivity in choosing and in rejecting both authors and papers. I have rather arbitrarily chosen, in the main, the most famous mathematicians of the period in question and have concentrated on their major works in numerical analysis at the expense, perhaps, of other lesser known but capable analysts. This selectivity results from the need to choose from a large body of literature, and from my feeling that almost by definition the great masters of mathematics were the ones responsible for the most significant accomplishments. In any event I must accept full responsibility for the choices. I would particularly like to acknowledge my thanks to Professor Otto Neugebauer for his help and inspiration in the preparation of this book. This consisted of many friendly discussions that I will always value. I should also like to express my deep appreciation to the International Business Machines Corporation of which I have the honor of being a Fellow and in particular to Dr. Ralph E. Gomory, its Vice-President for Research, for permitting me to undertake the writing of this book and for helping make it possible by his continuing encouragement and support.
A First Course in the Numerical Analysis of Differential Equations
Author: A. Iserles
Publisher: Cambridge University Press
ISBN: 0521734908
Category : Mathematics
Languages : en
Pages : 481
Book Description
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Publisher: Cambridge University Press
ISBN: 0521734908
Category : Mathematics
Languages : en
Pages : 481
Book Description
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Introduction to Numerical Analysis
Author: J. Stoer
Publisher: Springer Science & Business Media
ISBN: 1475722729
Category : Mathematics
Languages : en
Pages : 674
Book Description
On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.
Publisher: Springer Science & Business Media
ISBN: 1475722729
Category : Mathematics
Languages : en
Pages : 674
Book Description
On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.
Numerical Methods for Two-Point Boundary-Value Problems
Author: Herbert B. Keller
Publisher: Courier Dover Publications
ISBN: 0486828344
Category : Mathematics
Languages : en
Pages : 417
Book Description
Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.
Publisher: Courier Dover Publications
ISBN: 0486828344
Category : Mathematics
Languages : en
Pages : 417
Book Description
Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.
A First Course in Numerical Analysis
Author: Anthony Ralston
Publisher: Courier Corporation
ISBN: 9780486414546
Category : Mathematics
Languages : en
Pages : 644
Book Description
Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.
Publisher: Courier Corporation
ISBN: 9780486414546
Category : Mathematics
Languages : en
Pages : 644
Book Description
Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.
Numerical Methods
Author: Anne Greenbaum
Publisher: Princeton University Press
ISBN: 1400842670
Category : Mathematics
Languages : en
Pages : 471
Book Description
A rigorous and comprehensive introduction to numerical analysis Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects—design, analysis, or computer implementation—of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online
Publisher: Princeton University Press
ISBN: 1400842670
Category : Mathematics
Languages : en
Pages : 471
Book Description
A rigorous and comprehensive introduction to numerical analysis Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects—design, analysis, or computer implementation—of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online
Numerical Analysis for Statisticians
Author: Kenneth Lange
Publisher: Springer Science & Business Media
ISBN: 1441959459
Category : Business & Economics
Languages : en
Pages : 606
Book Description
Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.
Publisher: Springer Science & Business Media
ISBN: 1441959459
Category : Business & Economics
Languages : en
Pages : 606
Book Description
Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.