The Biology of Computer Life

The Biology of Computer Life PDF Author: Geoffrey Leslie Simons
Publisher: Springer Science & Business Media
ISBN:
Category : Computers
Languages : en
Pages : 256

Get Book

Book Description
The doctrine of computer life is not congenial to many people. Often they have not thought in any depth about the idea, and it necessarily disturbs their psychological and intellectual frame of reference: it forces a reappraisal of what it is to be alive, what it is to be human, and whether there are profound, yet un expected, implications in the development of modern com puters. There is abundant evidence to suggest that we are wit nessing the emergence of a vast new family of life-forms on earth, organisms that are not based on the familiar metabolic chemistries yet whose manifest 'life credentials' are accumulating year by year. It is a mistake to regard biology as a closed science, with arbitrarily limited categories; and we should agree with Jacob (1974) who observed that 'Contrary to what is imagined, biology is not a unified science'. Biology is essentially concerned with living things, and we should be reluctant to assume that at anyone time our concept and understanding of life are complete and incapable of further refinement. And it seems clear that much of the continuing refinement of biological categories will be stimulated by advances in systems theory, and in particular by those advances that relate to the rapidly expanding world of computing and robotics. We should also remember what Pant in (1968) said in a different context: 'the biological sciences are unrestricted . . . and their investigator must be prepared to follow their problems into any other science whatsoever.

The Biology of Computer Life

The Biology of Computer Life PDF Author: Geoffrey Leslie Simons
Publisher: Springer Science & Business Media
ISBN:
Category : Computers
Languages : en
Pages : 256

Get Book

Book Description
The doctrine of computer life is not congenial to many people. Often they have not thought in any depth about the idea, and it necessarily disturbs their psychological and intellectual frame of reference: it forces a reappraisal of what it is to be alive, what it is to be human, and whether there are profound, yet un expected, implications in the development of modern com puters. There is abundant evidence to suggest that we are wit nessing the emergence of a vast new family of life-forms on earth, organisms that are not based on the familiar metabolic chemistries yet whose manifest 'life credentials' are accumulating year by year. It is a mistake to regard biology as a closed science, with arbitrarily limited categories; and we should agree with Jacob (1974) who observed that 'Contrary to what is imagined, biology is not a unified science'. Biology is essentially concerned with living things, and we should be reluctant to assume that at anyone time our concept and understanding of life are complete and incapable of further refinement. And it seems clear that much of the continuing refinement of biological categories will be stimulated by advances in systems theory, and in particular by those advances that relate to the rapidly expanding world of computing and robotics. We should also remember what Pant in (1968) said in a different context: 'the biological sciences are unrestricted . . . and their investigator must be prepared to follow their problems into any other science whatsoever.

The Biology of Computer Life

The Biology of Computer Life PDF Author: SIMONS
Publisher: Springer Science & Business Media
ISBN: 1468480502
Category : Science
Languages : en
Pages : 258

Get Book

Book Description
The doctrine of computer life is not congenial to many people. Often they have not thought in any depth about the idea, and it necessarily disturbs their psychological and intellectual frame of reference: it forces a reappraisal of what it is to be alive, what it is to be human, and whether there are profound, yet un expected, implications in the development of modern com puters. There is abundant evidence to suggest that we are wit nessing the emergence of a vast new family of life-forms on earth, organisms that are not based on the familiar metabolic chemistries yet whose manifest 'life credentials' are accumulating year by year. It is a mistake to regard biology as a closed science, with arbitrarily limited categories; and we should agree with Jacob (1974) who observed that 'Contrary to what is imagined, biology is not a unified science'. Biology is essentially concerned with living things, and we should be reluctant to assume that at anyone time our concept and understanding of life are complete and incapable of further refinement. And it seems clear that much of the continuing refinement of biological categories will be stimulated by advances in systems theory, and in particular by those advances that relate to the rapidly expanding world of computing and robotics. We should also remember what Pant in (1968) said in a different context: 'the biological sciences are unrestricted . . . and their investigator must be prepared to follow their problems into any other science whatsoever.

Artificial Life

Artificial Life PDF Author: Steven Levy
Publisher:
ISBN: 9780140231052
Category : Artificial intelligence
Languages : en
Pages : 390

Get Book

Book Description
This book looks at artificial life science - A-Life, an important new area of scientific research involving the disciplines of microbiology, evolutionary theory, physics, chemistry and computer science. In the 1940s a mathematician named John von Neumann, a man with a claim to being the father of the modern computer, invented a hypothetical mathematical entity called a cellular automaton. His aim was to construct a machine that could reproduce itself. In the years since, with the development of hugely more sophisticated and complex computers, von Neumann's insights have gradually led to a point where scientists have created, within the wiring of these machines, something that so closely simulates life that it may, arguably, be called life. This machine reproduces itself, mutates, evolves through generations and dies.

The Age of Living Machines: How Biology Will Build the Next Technology Revolution

The Age of Living Machines: How Biology Will Build the Next Technology Revolution PDF Author: Susan Hockfield
Publisher: W. W. Norton & Company
ISBN: 0393634752
Category : Science
Languages : en
Pages : 256

Get Book

Book Description
From the former president of MIT, the story of the next technology revolution, and how it will change our lives. A century ago, discoveries in physics came together with engineering to produce an array of astonishing new technologies: radios, telephones, televisions, aircraft, radar, nuclear power, computers, the Internet, and a host of still-evolving digital tools. These technologies so radically reshaped our world that we can no longer conceive of life without them. Today, the world’s population is projected to rise to well over 9.5 billion by 2050, and we are currently faced with the consequences of producing the energy that fuels, heats, and cools us. With temperatures and sea levels rising, and large portions of the globe plagued with drought, famine, and drug-resistant diseases, we need new technologies to tackle these problems. But we are on the cusp of a new convergence, argues world-renowned neuroscientist Susan Hockfield, with discoveries in biology coming together with engineering to produce another array of almost inconceivable technologies—next-generation products that have the potential to be every bit as paradigm shifting as the twentieth century’s digital wonders. The Age of Living Machines describes some of the most exciting new developments and the scientists and engineers who helped create them. Virus-built batteries. Protein-based water filters. Cancer-detecting nanoparticles. Mind-reading bionic limbs. Computer-engineered crops. Together they highlight the promise of the technology revolution of the twenty-first century to overcome some of the greatest humanitarian, medical, and environmental challenges of our time.

Digital Biology

Digital Biology PDF Author: Peter J. Bentley
Publisher: Simon and Schuster
ISBN: 0743238168
Category : Computers
Languages : en
Pages : 407

Get Book

Book Description
Imagine a future world where computers can create universes -- digital environments made from binary ones and zeros. Imagine that within these universes there exist biological forms that reproduce, grow, and think. Imagine plantlike forms, ant colonies, immune systems, and brains, all adapting, evolving, and getting better at solving problems. Imagine if our computers became greenhouses for a new kind of nature. Just think what digital biology could do for us. Perhaps it could evolve new designs for us, think up ways to detect fraud using digital neurons, or solve scheduling problems with ants. Perhaps it could detect hackers with immune systems or create music from the patterns of growth of digital seashells. Perhaps it would allow our computers to become creative and inventive. Now stop imagining. digital biology is an intriguing glimpse into the future of technology by one of the most creative thinkers working in computer science today. As Peter J. Bentley explains, the next giant step in computing technology is already under way as computer scientists attempt to create digital universes that replicate the natural world. Within these digital universes, we will evolve solutions to problems, construct digital brains that can learn and think, and use immune systems to trap and destroy computer viruses. The biological world is the model for the next generation of computer software. By adapting the principles of biology, computer scientists will make it possible for computers to function as the natural world does. In practical terms, this will mean that we will soon have "smart" devices, such as houses that will keep the temperature as we like it and automobiles that will start only for drivers they recognize (through voice recognition or other systems) and that will navigate highways safely and with maximum fuel efficiency. Computers will soon be powerful enough and small enough that they can become part of clothing. "Digital agents" will be able to help us find a bank or restaurant in a city that we have never visited before, even as we walk through the airport. Miniature robots may even be incorporated into our bodies to monitor our health. Digital Biology is also an exploration of biology itself from a new perspective. We must understand how nature works in its most intimate detail before we can use these same biological processes inside our computers. Already scientists engaged in this work have gained new insights into the elegant simplicity of the natural universe. This is a visionary book, written in accessible, nontechnical language, that explains how cutting-edge computer science will shape our world in the coming decades.

Biocomputing

Biocomputing PDF Author: Panos M. Pardalos
Publisher: Springer Science & Business Media
ISBN: 1461302595
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book

Book Description
In the quest to understand and model the healthy or sick human body, re searchers and medical doctors are utilizing more and more quantitative tools and techniques. This trend is pushing the envelope of a new field we call Biomedical Computing, as an exciting frontier among signal processing, pattern recognition, optimization, nonlinear dynamics, computer science and biology, chemistry and medicine. A conference on Biocomputing was held during February 25-27, 2001 at the University of Florida. The conference was sponsored by the Center for Applied Optimization, the Computational Neuroengineering Center, the Biomedical En gineering Program (through a Whitaker Foundation grant), the Brain Institute, the School of Engineering, and the University of Florida Research & Graduate Programs. The conference provided a forum for researchers to discuss and present new directions in Biocomputing. The well-attended three days event was highlighted by the presence of top researchers in the field who presented their work in Biocomputing. This volume contains a selective collection of ref ereed papers based on talks presented at this conference. You will find seminal contributions in genomics, global optimization, computational neuroscience, FMRI, brain dynamics, epileptic seizure prediction and cancer diagnostics. We would like to take the opportunity to thank the sponsors, the authors of the papers, the anonymous referees, and Kluwer Academic Publishers for making the conference successful and the publication of this volume possible. Panos M. Pardalos and Jose C.

A Computer Scientist's Guide to Cell Biology

A Computer Scientist's Guide to Cell Biology PDF Author: William W. Cohen
Publisher: Springer Science & Business Media
ISBN: 0387482784
Category : Computers
Languages : en
Pages : 104

Get Book

Book Description
This book is designed specifically as a guide for Computer Scientists needing an introduction to Cell Biology. The text explores three different facets of biology: biological systems, experimental methods, and language and nomenclature. The author discusses what biologists are trying to determine from their experiments, how various experimental procedures are used and how they relate to accepted concepts in computer science, and the vocabulary necessary to read and understand current literature in biology. The book is an invaluable reference tool and an excellent starting point for a more comprehensive examination of cell biology.

Wetware

Wetware PDF Author: Dennis Bray
Publisher: Yale University Press
ISBN: 0300155441
Category : Science
Languages : en
Pages : 280

Get Book

Book Description
“A beautifully written journey into the mechanics of the world of the cell, and even beyond, exploring the analogy with computers in a surprising way” (Denis Noble, author of Dance to the Tune of Life). How does a single-cell creature, such as an amoeba, lead such a sophisticated life? How does it hunt living prey, respond to lights, sounds, and smells, and display complex sequences of movements without the benefit of a nervous system? This book offers a startling and original answer. In clear, jargon-free language, Dennis Bray taps the findings from the discipline of systems biology to show that the internal chemistry of living cells is a form of computation. Cells are built out of molecular circuits that perform logical operations, as electronic devices do, but with unique properties. Bray argues that the computational juice of cells provides the basis for all distinctive properties of living systems: it allows organisms to embody in their internal structure an image of the world, and this accounts for their adaptability, responsiveness, and intelligence. In Wetware, Bray offers imaginative, wide-ranging, and perceptive critiques of robotics and complexity theory, as well as many entertaining and telling anecdotes. For the general reader, the practicing scientist, and all others with an interest in the nature of life, this book is an exciting portal to some of biology’s latest discoveries and ideas. “Drawing on the similarities between Pac-Man and an amoeba and efforts to model the human brain, this absorbing read shows that biologists and engineers have a lot to learn from working together.” —Discover magazine “Wetware will get the reader thinking.” —Science magazine

Developing Bioinformatics Computer Skills

Developing Bioinformatics Computer Skills PDF Author: Cynthia Gibas
Publisher: "O'Reilly Media, Inc."
ISBN: 9781565926646
Category : Computers
Languages : en
Pages : 452

Get Book

Book Description
This practical, hands-on guide shows how to develop a structured approach to biological data and the tools needed to analyze it. It's aimed at scientists and students learning computational approaches to biological data, as well as experienced biology researchers starting to use computers to handle data.

Computing for Biologists

Computing for Biologists PDF Author: Ran Libeskind-Hadas
Publisher: Cambridge University Press
ISBN: 1316061337
Category : Science
Languages : en
Pages : 289

Get Book

Book Description
Computing is revolutionizing the practice of biology. This book, which assumes no prior computing experience, provides students with the tools to write their own Python programs and to understand fundamental concepts in computational biology and bioinformatics. Each major part of the book begins with a compelling biological question, followed by the algorithmic ideas and programming tools necessary to explore it: the origins of pathogenicity are examined using gene finding, the evolutionary history of sex determination systems is studied using sequence alignment, and the origin of modern humans is addressed using phylogenetic methods. In addition to providing general programming skills, this book explores the design of efficient algorithms, simulation, NP-hardness, and the maximum likelihood method, among other key concepts and methods. Easy-to-read and designed to equip students with the skills to write programs for solving a range of biological problems, the book is accompanied by numerous programming exercises, available at www.cs.hmc.edu/CFB.