The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations

The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations PDF Author: Shuhui Wu
Publisher: GRIN Verlag
ISBN: 3346600963
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Doctoral Thesis / Dissertation from the year 2009 in the subject Mathematics - Applied Mathematics, London Metropolitan University, language: English, abstract: This thesis deals with the asymptotic and oscillatory behaviour of the solutions of certain differential and difference equations. It mainly consists of three parts. The first part is to study the asymptotic behaviour of certain differential equations. The second part is to look for oscillatory criteria for certain nonlinear neutral differential equations. And the third part is to establish new criteria for a class of nonlinear neutral difference equations of any order with continuous variable and another type of higher even order nonlinear neutral difference equations to be oscillatory. A functional differential equation is a differential equation involving the values of the unknown functions at present, as well as at past or future time. The word “time” here stands for the independent variable. In the thesis, the concept of a functional differential equation is confined to ordinary differential equations, although it suits partial ones as well. Functional differential equations can be classified into four types according to their deviations: retarded, advanced, neutral and mixed. A neutral equation is one in which derivative of functionals of the past history and the present state are involved, but no future states occur in the equation. The order of a differential equation is the order of the highest derivative of the unknown function. A difference equation is a specific type of recurrence relation, which is an equation that defines a sequence recursively: each term of the sequence is defined as a function of the preceding terms. On the other hand, difference equations can be thought of as the discrete analogue of the corresponding differential equations. By analogy with differential equations, difference equations also can be classified into four types: delay, advanced, neutral, and mixed. The order of a difference equation is the difference between the largest and the smallest values of the integer variable explicitly involved in the difference equation.

The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations

The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations PDF Author: Shuhui Wu
Publisher: GRIN Verlag
ISBN: 3346600963
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Doctoral Thesis / Dissertation from the year 2009 in the subject Mathematics - Applied Mathematics, London Metropolitan University, language: English, abstract: This thesis deals with the asymptotic and oscillatory behaviour of the solutions of certain differential and difference equations. It mainly consists of three parts. The first part is to study the asymptotic behaviour of certain differential equations. The second part is to look for oscillatory criteria for certain nonlinear neutral differential equations. And the third part is to establish new criteria for a class of nonlinear neutral difference equations of any order with continuous variable and another type of higher even order nonlinear neutral difference equations to be oscillatory. A functional differential equation is a differential equation involving the values of the unknown functions at present, as well as at past or future time. The word “time” here stands for the independent variable. In the thesis, the concept of a functional differential equation is confined to ordinary differential equations, although it suits partial ones as well. Functional differential equations can be classified into four types according to their deviations: retarded, advanced, neutral and mixed. A neutral equation is one in which derivative of functionals of the past history and the present state are involved, but no future states occur in the equation. The order of a differential equation is the order of the highest derivative of the unknown function. A difference equation is a specific type of recurrence relation, which is an equation that defines a sequence recursively: each term of the sequence is defined as a function of the preceding terms. On the other hand, difference equations can be thought of as the discrete analogue of the corresponding differential equations. By analogy with differential equations, difference equations also can be classified into four types: delay, advanced, neutral, and mixed. The order of a difference equation is the difference between the largest and the smallest values of the integer variable explicitly involved in the difference equation.

Asymptotic Integration of Differential and Difference Equations

Asymptotic Integration of Differential and Difference Equations PDF Author: Sigrun Bodine
Publisher: Springer
ISBN: 331918248X
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers in asymptotic integration as well to non-experts who are interested in the asymptotic analysis of linear differential and difference equations. It will additionally be of interest to students in mathematics, applied sciences, and engineering. Linear algebra and some basic concepts from advanced calculus are prerequisites.

Asymptotic Behavior of Solutions of Differential-Difference Equations

Asymptotic Behavior of Solutions of Differential-Difference Equations PDF Author: Richard Bellman
Publisher: American Mathematical Soc.
ISBN: 0821812351
Category : Difference equations
Languages : en
Pages : 99

Get Book Here

Book Description


Oscillation Theory for Difference and Functional Differential Equations

Oscillation Theory for Difference and Functional Differential Equations PDF Author: R.P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 9401594015
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.

Theory of Third-Order Differential Equations

Theory of Third-Order Differential Equations PDF Author: Seshadev Padhi
Publisher: Springer Science & Business Media
ISBN: 8132216148
Category : Mathematics
Languages : en
Pages : 515

Get Book Here

Book Description
This book discusses the theory of third-order differential equations. Most of the results are derived from the results obtained for third-order linear homogeneous differential equations with constant coefficients. M. Gregus, in his book written in 1987, only deals with third-order linear differential equations. These findings are old, and new techniques have since been developed and new results obtained. Chapter 1 introduces the results for oscillation and non-oscillation of solutions of third-order linear differential equations with constant coefficients, and a brief introduction to delay differential equations is given. The oscillation and asymptotic behavior of non-oscillatory solutions of homogeneous third-order linear differential equations with variable coefficients are discussed in Ch. 2. The results are extended to third-order linear non-homogeneous equations in Ch. 3, while Ch. 4 explains the oscillation and non-oscillation results for homogeneous third-order nonlinear differential equations. Chapter 5 deals with the z-type oscillation and non-oscillation of third-order nonlinear and non-homogeneous differential equations. Chapter 6 is devoted to the study of third-order delay differential equations. Chapter 7 explains the stability of solutions of third-order equations. Some knowledge of differential equations, analysis and algebra is desirable, but not essential, in order to study the topic.

Asymptotic Properties of Oscillatory Solutions of Differential Equations of the N-th Order

Asymptotic Properties of Oscillatory Solutions of Differential Equations of the N-th Order PDF Author: Miroslav Bartušek
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 104

Get Book Here

Book Description


Oscillation Theory for Neutral Differential Equations with Delay

Oscillation Theory for Neutral Differential Equations with Delay PDF Author: D.D Bainov
Publisher: CRC Press
ISBN: 9780750301428
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.

Asymptotic Behavior and Stability Problems in Ordinary Differential Equations

Asymptotic Behavior and Stability Problems in Ordinary Differential Equations PDF Author: Lamberto Cesari
Publisher: Springer
ISBN: 3662403684
Category : Mathematics
Languages : en
Pages : 278

Get Book Here

Book Description
In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call "qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications.

Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations

Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations PDF Author: Leonid Berezansky
Publisher: CRC Press
ISBN: 1000048632
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
Asymptotic properties of solutions such as stability/ instability,oscillation/ nonoscillation, existence of solutions with specific asymptotics, maximum principles present a classical part in the theory of higher order functional differential equations. The use of these equations in applications is one of the main reasons for the developments in this field. The control in the mechanical processes leads to mathematical models with second order delay differential equations. Stability and stabilization of second order delay equations are one of the main goals of this book. The book is based on the authors’ results in the last decade. Features: Stability, oscillatory and asymptotic properties of solutions are studied in correlation with each other. The first systematic description of stability methods based on the Bohl-Perron theorem. Simple and explicit exponential stability tests. In this book, various types of functional differential equations are considered: second and higher orders delay differential equations with measurable coefficients and delays, integro-differential equations, neutral equations, and operator equations. Oscillation/nonoscillation, existence of unbounded solutions, instability, special asymptotic behavior, positivity, exponential stability and stabilization of functional differential equations are studied. New methods for the study of exponential stability are proposed. Noted among them inlcude the W-transform (right regularization), a priory estimation of solutions, maximum principles, differential and integral inequalities, matrix inequality method, and reduction to a system of equations. The book can be used by applied mathematicians and as a basis for a course on stability of functional differential equations for graduate students.

Discrete Oscillation Theory

Discrete Oscillation Theory PDF Author: Ravi P. Agarwal
Publisher: Hindawi Publishing Corporation
ISBN: 9775945194
Category : Difference Equations
Languages : en
Pages : 977

Get Book Here

Book Description
This book is devoted to a rapidly developing branch of the qualitative theory of difference equations with or without delays. It presents the theory of oscillation of difference equations, exhibiting classical as well as very recent results in that area. While there are several books on difference equations and also on oscillation theory for ordinary differential equations, there is until now no book devoted solely to oscillation theory for difference equations. This book is filling the gap, and it can easily be used as an encyclopedia and reference tool for discrete oscillation theory. In nine chapters, the book covers a wide range of subjects, including oscillation theory for second-order linear difference equations, systems of difference equations, half-linear difference equations, nonlinear difference equations, neutral difference equations, delay difference equations, and differential equations with piecewise constant arguments. This book summarizes almost 300 recent research papers and hence covers all aspects of discrete oscillation theory that have been discussed in recent journal articles. The presented theory is illustrated with 121 examples throughout the book. Each chapter concludes with a section that is devoted to notes and bibliographical and historical remarks. The book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. Besides serving as a reference tool for researchers in difference equations, this book can also be easily used as a textbook for undergraduate or graduate classes. It is written at a level easy to understand for college students who have had courses in calculus.