The Arithmetic of Elliptic Curves

The Arithmetic of Elliptic Curves PDF Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475719205
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

The Arithmetic of Elliptic Curves

The Arithmetic of Elliptic Curves PDF Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475719205
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

Advanced Topics in the Arithmetic of Elliptic Curves

Advanced Topics in the Arithmetic of Elliptic Curves PDF Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1461208513
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.

Arithmetic on Elliptic Curves with Complex Multiplication

Arithmetic on Elliptic Curves with Complex Multiplication PDF Author: B.H. Gross
Publisher: Springer
ISBN: 3540385754
Category : Mathematics
Languages : en
Pages : 100

Get Book Here

Book Description


Rational Points on Elliptic Curves

Rational Points on Elliptic Curves PDF Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475742525
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.

Elliptic Curves

Elliptic Curves PDF Author: Henry McKean
Publisher: Cambridge University Press
ISBN: 9780521658171
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
An introductory 1997 account in the style of the original discoverers, treating the fundamental themes even-handedly.

Elliptic Curves (Second Edition)

Elliptic Curves (Second Edition) PDF Author: James S Milne
Publisher: World Scientific
ISBN: 9811221855
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.

Arithmetic Theory of Elliptic Curves

Arithmetic Theory of Elliptic Curves PDF Author: J. Coates
Publisher: Springer Science & Business Media
ISBN: 9783540665465
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.

Elliptic Curves and Arithmetic Invariants

Elliptic Curves and Arithmetic Invariants PDF Author: Haruzo Hida
Publisher: Springer Science & Business Media
ISBN: 1461466571
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including μ-invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.

LMSST: 24 Lectures on Elliptic Curves

LMSST: 24 Lectures on Elliptic Curves PDF Author: John William Scott Cassels
Publisher: Cambridge University Press
ISBN: 9780521425308
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.

Elliptic Curves, Modular Forms, and Their L-functions

Elliptic Curves, Modular Forms, and Their L-functions PDF Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 0821852426
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description
Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.