Author: Anthony So
Publisher: Packt Publishing Ltd
ISBN: 180020373X
Category : Computers
Languages : en
Pages : 419
Book Description
With knowledge and information shared by experts, take your first steps towards creating scalable AI algorithms and solutions in Python, through practical exercises and engaging activities Key FeaturesLearn about AI and ML algorithms from the perspective of a seasoned data scientistGet practical experience in ML algorithms, such as regression, tree algorithms, clustering, and moreDesign neural networks that emulate the human brainBook Description You already know that artificial intelligence (AI) and machine learning (ML) are present in many of the tools you use in your daily routine. But do you want to be able to create your own AI and ML models and develop your skills in these domains to kickstart your AI career? The Applied Artificial Intelligence Workshop gets you started with applying AI with the help of practical exercises and useful examples, all put together cleverly to help you gain the skills to transform your career. The book begins by teaching you how to predict outcomes using regression. You’ll then learn how to classify data using techniques such as k-nearest neighbor (KNN) and support vector machine (SVM) classifiers. As you progress, you'll explore various decision trees by learning how to build a reliable decision tree model that can help your company find cars that clients are likely to buy. The final chapters will introduce you to deep learning and neural networks. Through various activities, such as predicting stock prices and recognizing handwritten digits, you'll learn how to train and implement convolutional neural networks (CNNs) and recurrent neural networks (RNNs). By the end of this applied AI book, you'll have learned how to predict outcomes and train neural networks and be able to use various techniques to develop AI and ML models. What you will learnCreate your first AI game in Python with the minmax algorithmImplement regression techniques to simplify real-world dataExperiment with classification techniques to label real-world dataPerform predictive analysis in Python using decision trees and random forestsUse clustering algorithms to group data without manual supportLearn how to use neural networks to process and classify labeled imagesWho this book is for The Applied Artificial Intelligence Workshop is designed for software developers and data scientists who want to enrich their projects with machine learning. Although you do not need any prior experience in AI, it is recommended that you have knowledge of high school-level mathematics and at least one programming language, preferably Python. Although this is a beginner's book, experienced students and programmers can improve their Python skills by implementing the practical applications given in this book.
The The Applied Artificial Intelligence Workshop
Author: Anthony So
Publisher: Packt Publishing Ltd
ISBN: 180020373X
Category : Computers
Languages : en
Pages : 419
Book Description
With knowledge and information shared by experts, take your first steps towards creating scalable AI algorithms and solutions in Python, through practical exercises and engaging activities Key FeaturesLearn about AI and ML algorithms from the perspective of a seasoned data scientistGet practical experience in ML algorithms, such as regression, tree algorithms, clustering, and moreDesign neural networks that emulate the human brainBook Description You already know that artificial intelligence (AI) and machine learning (ML) are present in many of the tools you use in your daily routine. But do you want to be able to create your own AI and ML models and develop your skills in these domains to kickstart your AI career? The Applied Artificial Intelligence Workshop gets you started with applying AI with the help of practical exercises and useful examples, all put together cleverly to help you gain the skills to transform your career. The book begins by teaching you how to predict outcomes using regression. You’ll then learn how to classify data using techniques such as k-nearest neighbor (KNN) and support vector machine (SVM) classifiers. As you progress, you'll explore various decision trees by learning how to build a reliable decision tree model that can help your company find cars that clients are likely to buy. The final chapters will introduce you to deep learning and neural networks. Through various activities, such as predicting stock prices and recognizing handwritten digits, you'll learn how to train and implement convolutional neural networks (CNNs) and recurrent neural networks (RNNs). By the end of this applied AI book, you'll have learned how to predict outcomes and train neural networks and be able to use various techniques to develop AI and ML models. What you will learnCreate your first AI game in Python with the minmax algorithmImplement regression techniques to simplify real-world dataExperiment with classification techniques to label real-world dataPerform predictive analysis in Python using decision trees and random forestsUse clustering algorithms to group data without manual supportLearn how to use neural networks to process and classify labeled imagesWho this book is for The Applied Artificial Intelligence Workshop is designed for software developers and data scientists who want to enrich their projects with machine learning. Although you do not need any prior experience in AI, it is recommended that you have knowledge of high school-level mathematics and at least one programming language, preferably Python. Although this is a beginner's book, experienced students and programmers can improve their Python skills by implementing the practical applications given in this book.
Publisher: Packt Publishing Ltd
ISBN: 180020373X
Category : Computers
Languages : en
Pages : 419
Book Description
With knowledge and information shared by experts, take your first steps towards creating scalable AI algorithms and solutions in Python, through practical exercises and engaging activities Key FeaturesLearn about AI and ML algorithms from the perspective of a seasoned data scientistGet practical experience in ML algorithms, such as regression, tree algorithms, clustering, and moreDesign neural networks that emulate the human brainBook Description You already know that artificial intelligence (AI) and machine learning (ML) are present in many of the tools you use in your daily routine. But do you want to be able to create your own AI and ML models and develop your skills in these domains to kickstart your AI career? The Applied Artificial Intelligence Workshop gets you started with applying AI with the help of practical exercises and useful examples, all put together cleverly to help you gain the skills to transform your career. The book begins by teaching you how to predict outcomes using regression. You’ll then learn how to classify data using techniques such as k-nearest neighbor (KNN) and support vector machine (SVM) classifiers. As you progress, you'll explore various decision trees by learning how to build a reliable decision tree model that can help your company find cars that clients are likely to buy. The final chapters will introduce you to deep learning and neural networks. Through various activities, such as predicting stock prices and recognizing handwritten digits, you'll learn how to train and implement convolutional neural networks (CNNs) and recurrent neural networks (RNNs). By the end of this applied AI book, you'll have learned how to predict outcomes and train neural networks and be able to use various techniques to develop AI and ML models. What you will learnCreate your first AI game in Python with the minmax algorithmImplement regression techniques to simplify real-world dataExperiment with classification techniques to label real-world dataPerform predictive analysis in Python using decision trees and random forestsUse clustering algorithms to group data without manual supportLearn how to use neural networks to process and classify labeled imagesWho this book is for The Applied Artificial Intelligence Workshop is designed for software developers and data scientists who want to enrich their projects with machine learning. Although you do not need any prior experience in AI, it is recommended that you have knowledge of high school-level mathematics and at least one programming language, preferably Python. Although this is a beginner's book, experienced students and programmers can improve their Python skills by implementing the practical applications given in this book.
The Applied Artificial Intelligence Workshop
Author: Anthony So
Publisher:
ISBN: 9781800205819
Category : Computers
Languages : en
Pages : 420
Book Description
Publisher:
ISBN: 9781800205819
Category : Computers
Languages : en
Pages : 420
Book Description
Applied Artificial Intelligence
Author: Mariya Yao
Publisher:
ISBN: 9780998289021
Category : Artificial intelligence
Languages : en
Pages : 246
Book Description
This bestselling book gives business leaders and executives a foundational education on how to leverage artificial intelligence and machine learning solutions to deliver ROI for your business.
Publisher:
ISBN: 9780998289021
Category : Artificial intelligence
Languages : en
Pages : 246
Book Description
This bestselling book gives business leaders and executives a foundational education on how to leverage artificial intelligence and machine learning solutions to deliver ROI for your business.
The Applied AI and Natural Language Processing Workshop
Author: Krishna Sankar
Publisher: Packt Publishing Ltd
ISBN: 1800205686
Category : Computers
Languages : en
Pages : 383
Book Description
With the help of engaging activities, learn how to leverage Amazon Web Services for building serverless intelligent applications that can process information in no time Key FeaturesLearn how to integrate Amazon's Simple Storage Services with AI and NLP projectsGet to grips with serverless computing and its applicationsCreate intelligent applications such as chatbots and image recognition modelsBook Description Are you fascinated with applications like Alexa and Siri and how they accurately process information within seconds before returning accurate results? Are you looking for a practical guide that will teach you how to build intelligent applications that can revolutionize the world of artificial intelligence? The Applied AI and NLP Workshop will take you on a practical journey where you will learn how to build artificial intelligence (AI) and natural language processing (NLP) applications with Amazon Web services (AWS). Starting with an introduction to AI and machine learning, this book will explain how Amazon S3, or Amazon Simple Storage Service, works. You'll then integrate AI with AWS to build serverless services and use Amazon's NLP service Comprehend to perform text analysis on a document. As you advance, the book will help you get to grips with topic modeling to extract and analyze common themes on a set of documents with unknown topics. You'll also work with Amazon Lex to create and customize a chatbot for task automation and use Amazon Rekognition for detecting objects, scenes, and text in images. By the end of The Applied AI and NLP Workshop, you'll be equipped with the knowledge and skills needed to build scalable intelligent applications with AWS. What you will learnGrasp the fundamentals of AI, ML, and AWSExplore the AWS command line, its interface, and its applicationsImport and export data to Amazon S3Perform topic modeling on a set of documents to analyze common themesDevelop a custom chatbot to get the latest stock market quotesCreate a personal call center and connect it to the chatbotWho this book is for If you are a machine learning enthusiast, data scientist, or programmer who wants to explore AWS's artificial intelligence and machine learning capabilities, this book is for you. Although not necessary, a basic understanding of AI and NLP will assist with grasping key topics quickly.
Publisher: Packt Publishing Ltd
ISBN: 1800205686
Category : Computers
Languages : en
Pages : 383
Book Description
With the help of engaging activities, learn how to leverage Amazon Web Services for building serverless intelligent applications that can process information in no time Key FeaturesLearn how to integrate Amazon's Simple Storage Services with AI and NLP projectsGet to grips with serverless computing and its applicationsCreate intelligent applications such as chatbots and image recognition modelsBook Description Are you fascinated with applications like Alexa and Siri and how they accurately process information within seconds before returning accurate results? Are you looking for a practical guide that will teach you how to build intelligent applications that can revolutionize the world of artificial intelligence? The Applied AI and NLP Workshop will take you on a practical journey where you will learn how to build artificial intelligence (AI) and natural language processing (NLP) applications with Amazon Web services (AWS). Starting with an introduction to AI and machine learning, this book will explain how Amazon S3, or Amazon Simple Storage Service, works. You'll then integrate AI with AWS to build serverless services and use Amazon's NLP service Comprehend to perform text analysis on a document. As you advance, the book will help you get to grips with topic modeling to extract and analyze common themes on a set of documents with unknown topics. You'll also work with Amazon Lex to create and customize a chatbot for task automation and use Amazon Rekognition for detecting objects, scenes, and text in images. By the end of The Applied AI and NLP Workshop, you'll be equipped with the knowledge and skills needed to build scalable intelligent applications with AWS. What you will learnGrasp the fundamentals of AI, ML, and AWSExplore the AWS command line, its interface, and its applicationsImport and export data to Amazon S3Perform topic modeling on a set of documents to analyze common themesDevelop a custom chatbot to get the latest stock market quotesCreate a personal call center and connect it to the chatbotWho this book is for If you are a machine learning enthusiast, data scientist, or programmer who wants to explore AWS's artificial intelligence and machine learning capabilities, this book is for you. Although not necessary, a basic understanding of AI and NLP will assist with grasping key topics quickly.
Deep Learning for Coders with fastai and PyTorch
Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624
Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624
Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Artificial Intelligence with Python
Author: Prateek Joshi
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Materials Discovery and Design
Author: Turab Lookman
Publisher: Springer
ISBN: 3319994654
Category : Science
Languages : en
Pages : 266
Book Description
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.
Publisher: Springer
ISBN: 3319994654
Category : Science
Languages : en
Pages : 266
Book Description
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.
Developments in Applied Artificial Intelligence
Author: Tim Hendtlass
Publisher: Springer
ISBN: 3540480358
Category : Computers
Languages : en
Pages : 841
Book Description
Arti?cial Intelligence is a ?eld with a long history, which is still very much active and developing today. Developments of new and improved techniques, together with the ever-increasing levels of available computing resources, are fueling an increasing spread of AI applications. These applications, as well as providing the economic rationale for the research, also provide the impetus to further improve the performance of our techniques. This further improvement today is most likely to come from an understanding of the ways our systems work, and therefore of their limitations, rather than from ideas ‘borrowed’ from biology. From this understanding comes improvement; from improvement comes further application; from further application comes the opportunity to further understand the limitations, and so the cycle repeats itself inde?nitely. In this volume are papers on a wide range of topics; some describe appli- tions that are only possible as a result of recent developments, others describe new developments only just being moved into practical application. All the - pers re?ect the way this ?eld continues to drive forward. This conference is the 15th in an unbroken series of annual conferences on Industrial and Engineering Application of Arti?cial Intelligence and Expert Systems organized under the auspices of the International Society of Applied Intelligence.
Publisher: Springer
ISBN: 3540480358
Category : Computers
Languages : en
Pages : 841
Book Description
Arti?cial Intelligence is a ?eld with a long history, which is still very much active and developing today. Developments of new and improved techniques, together with the ever-increasing levels of available computing resources, are fueling an increasing spread of AI applications. These applications, as well as providing the economic rationale for the research, also provide the impetus to further improve the performance of our techniques. This further improvement today is most likely to come from an understanding of the ways our systems work, and therefore of their limitations, rather than from ideas ‘borrowed’ from biology. From this understanding comes improvement; from improvement comes further application; from further application comes the opportunity to further understand the limitations, and so the cycle repeats itself inde?nitely. In this volume are papers on a wide range of topics; some describe appli- tions that are only possible as a result of recent developments, others describe new developments only just being moved into practical application. All the - pers re?ect the way this ?eld continues to drive forward. This conference is the 15th in an unbroken series of annual conferences on Industrial and Engineering Application of Arti?cial Intelligence and Expert Systems organized under the auspices of the International Society of Applied Intelligence.
Methods and Tools for Applied Artificial Intelligence
Author: Popovic
Publisher: CRC Press
ISBN: 9780824791957
Category : Computers
Languages : en
Pages : 548
Book Description
This work provides a comprehensive and coherent introduction to the expanding field of Artificial Intelligence (Al), explaining how knowledge-based systems are built, what tools and technologies are relevant and available, and how to employ them in specific situations. It pays special attention to the commercial intelligence systems that emerged in the '80s, as well as projecting the likely developments of the '90s.
Publisher: CRC Press
ISBN: 9780824791957
Category : Computers
Languages : en
Pages : 548
Book Description
This work provides a comprehensive and coherent introduction to the expanding field of Artificial Intelligence (Al), explaining how knowledge-based systems are built, what tools and technologies are relevant and available, and how to employ them in specific situations. It pays special attention to the commercial intelligence systems that emerged in the '80s, as well as projecting the likely developments of the '90s.
The Artificial Intelligence Infrastructure Workshop
Author: Chinmay Arankalle
Publisher: Packt Publishing Ltd
ISBN: 1800206992
Category : Computers
Languages : en
Pages : 731
Book Description
Explore how a data storage system works – from data ingestion to representation Key FeaturesUnderstand how artificial intelligence, machine learning, and deep learning are different from one anotherDiscover the data storage requirements of different AI apps using case studiesExplore popular data solutions such as Hadoop Distributed File System (HDFS) and Amazon Simple Storage Service (S3)Book Description Social networking sites see an average of 350 million uploads daily - a quantity impossible for humans to scan and analyze. Only AI can do this job at the required speed, and to leverage an AI application at its full potential, you need an efficient and scalable data storage pipeline. The Artificial Intelligence Infrastructure Workshop will teach you how to build and manage one. The Artificial Intelligence Infrastructure Workshop begins taking you through some real-world applications of AI. You'll explore the layers of a data lake and get to grips with security, scalability, and maintainability. With the help of hands-on exercises, you'll learn how to define the requirements for AI applications in your organization. This AI book will show you how to select a database for your system and run common queries on databases such as MySQL, MongoDB, and Cassandra. You'll also design your own AI trading system to get a feel of the pipeline-based architecture. As you learn to implement a deep Q-learning algorithm to play the CartPole game, you'll gain hands-on experience with PyTorch. Finally, you'll explore ways to run machine learning models in production as part of an AI application. By the end of the book, you'll have learned how to build and deploy your own AI software at scale, using various tools, API frameworks, and serialization methods. What you will learnGet to grips with the fundamentals of artificial intelligenceUnderstand the importance of data storage and architecture in AI applicationsBuild data storage and workflow management systems with open source toolsContainerize your AI applications with tools such as DockerDiscover commonly used data storage solutions and best practices for AI on Amazon Web Services (AWS)Use the AWS CLI and AWS SDK to perform common data tasksWho this book is for If you are looking to develop the data storage skills needed for machine learning and AI and want to learn AI best practices in data engineering, this workshop is for you. Experienced programmers can use this book to advance their career in AI. Familiarity with programming, along with knowledge of exploratory data analysis and reading and writing files using Python will help you to understand the key concepts covered.
Publisher: Packt Publishing Ltd
ISBN: 1800206992
Category : Computers
Languages : en
Pages : 731
Book Description
Explore how a data storage system works – from data ingestion to representation Key FeaturesUnderstand how artificial intelligence, machine learning, and deep learning are different from one anotherDiscover the data storage requirements of different AI apps using case studiesExplore popular data solutions such as Hadoop Distributed File System (HDFS) and Amazon Simple Storage Service (S3)Book Description Social networking sites see an average of 350 million uploads daily - a quantity impossible for humans to scan and analyze. Only AI can do this job at the required speed, and to leverage an AI application at its full potential, you need an efficient and scalable data storage pipeline. The Artificial Intelligence Infrastructure Workshop will teach you how to build and manage one. The Artificial Intelligence Infrastructure Workshop begins taking you through some real-world applications of AI. You'll explore the layers of a data lake and get to grips with security, scalability, and maintainability. With the help of hands-on exercises, you'll learn how to define the requirements for AI applications in your organization. This AI book will show you how to select a database for your system and run common queries on databases such as MySQL, MongoDB, and Cassandra. You'll also design your own AI trading system to get a feel of the pipeline-based architecture. As you learn to implement a deep Q-learning algorithm to play the CartPole game, you'll gain hands-on experience with PyTorch. Finally, you'll explore ways to run machine learning models in production as part of an AI application. By the end of the book, you'll have learned how to build and deploy your own AI software at scale, using various tools, API frameworks, and serialization methods. What you will learnGet to grips with the fundamentals of artificial intelligenceUnderstand the importance of data storage and architecture in AI applicationsBuild data storage and workflow management systems with open source toolsContainerize your AI applications with tools such as DockerDiscover commonly used data storage solutions and best practices for AI on Amazon Web Services (AWS)Use the AWS CLI and AWS SDK to perform common data tasksWho this book is for If you are looking to develop the data storage skills needed for machine learning and AI and want to learn AI best practices in data engineering, this workshop is for you. Experienced programmers can use this book to advance their career in AI. Familiarity with programming, along with knowledge of exploratory data analysis and reading and writing files using Python will help you to understand the key concepts covered.