The Application of Adaptive Mesh Techniques to Numerical Simulations of Gravity Current Flows

The Application of Adaptive Mesh Techniques to Numerical Simulations of Gravity Current Flows PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Adaptive Mesh Refinement Method for CFD Applications

Adaptive Mesh Refinement Method for CFD Applications PDF Author: Oscar Luis Antepara Zambrano
Publisher:
ISBN:
Category :
Languages : en
Pages : 158

Get Book Here

Book Description
The main objective of this thesis is the development of an adaptive mesh refinement (AMR) algorithm for computational fluid dynamics simulations using hexahedral and tetrahedral meshes. This numerical methodology is applied in the context of large-eddy simulations (LES) of turbulent flows and direct numerical simulations (DNS) of interfacial flows, to bring new numerical research and physical insight. For the fluid dynamics simulations, the governing equations, the spatial discretization on unstructured grids and the numerical schemes for solving Navier-Stokes equations are presented. The equations follow a discretization by conservative finite-volume on collocated meshes. For the turbulent flows formulation, the spatial discretization preserves symmetry properties of the continuous differential operators and the time integration follows a self-adaptive strategy, which has been well tested on unstructured grids. Moreover, LES model consisting of a wall adapting local-eddy-viscosity within a variational multi-scale formulation is used for the applications showed in this thesis. For the two-phase flow formulation, a conservative level-set method is applied for capturing the interface between two fluids and is implemented with a variable density projection scheme to simulate incompressible two-phase flows on unstructured meshes. The AMR algorithm developed in this thesis is based on a quad/octree data structure and keeps a relation of 1:2 between levels of refinement. In the case of tetrahedral meshes, a geometrical criterion is followed to keep the quality metric of the mesh on a reasonable basis. The parallelization strategy consists mainly in the creation of mesh elements in each sub-domain and establishes a unique global identification number, to avoid duplicate elements. Load balance is assured at each AMR iteration to keep the parallel performance of the CFD code. Moreover, a mesh multiplication algorithm (02) is reported to create large meshes, with different kind of mesh elements, but preserving the topology from a coarser original mesh. This thesis focuses on the study of turbulent flows and two-phase flows using an AMR framework. The cases studied for LES of turbulent flows applications are the flow around one and two separated square cylinders, and the flow around a simplified car model. In this context, a physics-based refinement criterion is developed, consisting of the residual velocity calculated from a multi-scale decomposition of the instantaneous velocity. This criteria ensures grid adaptation following the main vortical structures and giving enough mesh resolution on the zones of interest, i.e., flow separation, turbulent wakes, and vortex shedding. The cases studied for the two-phase flows are the DNS of 2D and 3D gravity-driven bubble, with a particular focus on the wobbling regime. A study of rising bubbles in the wobbling regime and the effect of dimensionless numbers on the dynamic behavior of the bubbles are presented. Moreover, the use of tetrahedral AMR is applied for the numerical simulation of gravity-driven bubbles in complex domains. On this topic, the methodology is validated on bubbles rising in cylindrical channels with different topology, where the study of these cases contributed to having new numerical research and physical insight in the development of a rising bubble with wall effects.

The Application of Adaptive Mesh Refinement to the Numerical Simulation of Compressible Flow

The Application of Adaptive Mesh Refinement to the Numerical Simulation of Compressible Flow PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Get Book Here

Book Description
This article is based on the adaptive mesh refinement calculation methods developed by M.J. Berger and J. Oliger. It opts for the use of the concept of numerous units formed into a grid, used in solving hyperbolic type equation sets. It combines finite difference forms, opts for the use of Richardson extrapolation techniques to automatically carry out local truncation error estimates, and, for regions with low accuracy, produces new fine mesh local refinements or eliminates old fine mesh refinements which are no longer needed, in order to reach, in the minimum amount of operations, the specified accuracy requirements. Grids are capable of going down into a layer on layer refinement. On the basis of the layered sequence of coverage, each individual grid is a rectangular uniform grid or mesh in any direction desired. This set of algorithms is independent of difference forms used in solutions, is very easy, and combines various types of forms. (AN).

Adaptive Mesh Techniques for Unsteady Multi-gradient Problems in Computational Fluid Dynamics

Adaptive Mesh Techniques for Unsteady Multi-gradient Problems in Computational Fluid Dynamics PDF Author: Timothy James Bartel
Publisher:
ISBN:
Category :
Languages : en
Pages : 300

Get Book Here

Book Description


Mesh Generation and Adaptation

Mesh Generation and Adaptation PDF Author: Rubén Sevilla
Publisher: Springer Nature
ISBN: 3030925404
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
The developments in mesh generation are usually driven by the needs of new applications and/or novel algorithms. The last decade has seen a renewed interest in mesh generation and adaptation by the computational engineering community, due to the challenges introduced by complex industrial problems.Another common challenge is the need to handle complex geometries. Nowadays, it is becoming obvious that geometry should be persistent throughout the whole simulation process. Several methodologies that can carry the geometric information throughout the simulation stage are available, but due to the novelty of these methods, the generation of suitable meshes for these techniques is still the main obstacle for the industrial uptake of this technology.This book will cover different aspects of mesh generation and adaptation, with particular emphasis on cutting-edge mesh generation techniques for advanced discretisation methods and complex geometries.

Adaptive Moving Mesh Methods

Adaptive Moving Mesh Methods PDF Author: Weizhang Huang
Publisher: Springer Science & Business Media
ISBN: 1441979166
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book.

Applied Computational Fluid Dynamics Techniques

Applied Computational Fluid Dynamics Techniques PDF Author: Rainald Löhner
Publisher: John Wiley & Sons
ISBN: 9780470989661
Category : Science
Languages : en
Pages : 544

Get Book Here

Book Description
Computational fluid dynamics (CFD) is concerned with the efficient numerical solution of the partial differential equations that describe fluid dynamics. CFD techniques are commonly used in the many areas of engineering where fluid behavior is an important factor. Traditional fields of application include aerospace and automotive design, and more recently, bioengineering and consumer and medical electronics. With Applied Computational Fluid Dynamics Techniques, 2nd edition, Rainald Löhner introduces the reader to the techniques required to achieve efficient CFD solvers, forming a bridge between basic theoretical and algorithmic aspects of the finite element method and its use in an industrial context where methods have to be both as simple but also as robust as possible. This heavily revised second edition takes a practice-oriented approach with a strong emphasis on efficiency, and offers important new and updated material on; Overlapping and embedded grid methods Treatment of free surfaces Grid generation Optimal use of supercomputing hardware Optimal shape and process design Applied Computational Fluid Dynamics Techniques, 2nd edition is a vital resource for engineers, researchers and designers working on CFD, aero and hydrodynamics simulations and bioengineering. Its unique practical approach will also appeal to graduate students of fluid mechanics and aero and hydrodynamics as well as biofluidics.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 456

Get Book Here

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Application of Adaptive Mesh Refinement to Particle-in-cell Simulations of Plasmas and Beams

Application of Adaptive Mesh Refinement to Particle-in-cell Simulations of Plasmas and Beams PDF Author: A. Friedman
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Get Book Here

Book Description
Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations, and present examples of application in Heavy Ion Fusion and related fields which illustrate the effectiveness of the approach. We also report on the status of a collaboration under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to upgrade ANAG's mesh refinement library Chombo to include the tools needed by Particle-In-Cell simulation codes.

Adaptive Mesh Refinement for Pseudospectral Methods in Numerical Relativity

Adaptive Mesh Refinement for Pseudospectral Methods in Numerical Relativity PDF Author: Sarah Renkhoff
Publisher:
ISBN:
Category :
Languages : de
Pages : 0

Get Book Here

Book Description
Across all of computational physics, a central problem is that of discretization, from the choice of resolution in simple finite difference approaches, to the details of more intricate discretization schemes such as spectral elements. The choice of discretization decides the numerical solution space, as well as the properties of numerical methods, such as their convergence and stability. For this reason, the effective use of any numerical scheme requires a proper understanding of the underlying discretization scheme and its parameters. In particular, modern numerical methods often incorporate adaptive discretization schemes, utilizing heterogeneous meshes that change with time. In this work, we will explore one such method in the form of a state-of-the-art numerical relativity code, and the implementation of an adaptive mesh refinement (AMR) scheme within it. We describe in detail its features, and the resulting properties as it is used to solve physical problems in the form of hyperbolic partial differential equations, and we examine the scaling behavior of the resulting method. We also present results obtained using this scheme, in the form of simulations of the critical collapse of gravitational waves, that were made possible by the AMR system, showing some evidence of both self-similarity and universality in this system. Finally, we study a suite of several challenging test cases, beginning with a simple two-dimensional wave equation with an added nonlinearity, which results in critical behavior for certain choices of initial data, then moving on to the collapse of a real scalar field minimally coupled to general relativity in spherical symmetry. Finally, we use the collapse of gravitational waves in vacuum in axisymmetry as our third test case. We use these example problems to evaluate the gains in terms of accuracy, as well as efficiency, that are obtained through the use of adaptive resolutions.