Author: John L. Hennessy
Publisher: Morgan Kaufmann
ISBN: 0128119063
Category : Computers
Languages : en
Pages : 939
Book Description
Computer Architecture: A Quantitative Approach, Sixth Edition has been considered essential reading by instructors, students and practitioners of computer design for over 20 years. The sixth edition of this classic textbook from Hennessy and Patterson, winners of the 2017 ACM A.M. Turing Award recognizing contributions of lasting and major technical importance to the computing field, is fully revised with the latest developments in processor and system architecture. The text now features examples from the RISC-V (RISC Five) instruction set architecture, a modern RISC instruction set developed and designed to be a free and openly adoptable standard. It also includes a new chapter on domain-specific architectures and an updated chapter on warehouse-scale computing that features the first public information on Google's newest WSC. True to its original mission of demystifying computer architecture, this edition continues the longstanding tradition of focusing on areas where the most exciting computing innovation is happening, while always keeping an emphasis on good engineering design. - Winner of a 2019 Textbook Excellence Award (Texty) from the Textbook and Academic Authors Association - Includes a new chapter on domain-specific architectures, explaining how they are the only path forward for improved performance and energy efficiency given the end of Moore's Law and Dennard scaling - Features the first publication of several DSAs from industry - Features extensive updates to the chapter on warehouse-scale computing, with the first public information on the newest Google WSC - Offers updates to other chapters including new material dealing with the use of stacked DRAM; data on the performance of new NVIDIA Pascal GPU vs. new AVX-512 Intel Skylake CPU; and extensive additions to content covering multicore architecture and organization - Includes "Putting It All Together" sections near the end of every chapter, providing real-world technology examples that demonstrate the principles covered in each chapter - Includes review appendices in the printed text and additional reference appendices available online - Includes updated and improved case studies and exercises - ACM named John L. Hennessy and David A. Patterson, recipients of the 2017 ACM A.M. Turing Award for pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry
Computer Architecture
Author: John L. Hennessy
Publisher: Morgan Kaufmann
ISBN: 0128119063
Category : Computers
Languages : en
Pages : 939
Book Description
Computer Architecture: A Quantitative Approach, Sixth Edition has been considered essential reading by instructors, students and practitioners of computer design for over 20 years. The sixth edition of this classic textbook from Hennessy and Patterson, winners of the 2017 ACM A.M. Turing Award recognizing contributions of lasting and major technical importance to the computing field, is fully revised with the latest developments in processor and system architecture. The text now features examples from the RISC-V (RISC Five) instruction set architecture, a modern RISC instruction set developed and designed to be a free and openly adoptable standard. It also includes a new chapter on domain-specific architectures and an updated chapter on warehouse-scale computing that features the first public information on Google's newest WSC. True to its original mission of demystifying computer architecture, this edition continues the longstanding tradition of focusing on areas where the most exciting computing innovation is happening, while always keeping an emphasis on good engineering design. - Winner of a 2019 Textbook Excellence Award (Texty) from the Textbook and Academic Authors Association - Includes a new chapter on domain-specific architectures, explaining how they are the only path forward for improved performance and energy efficiency given the end of Moore's Law and Dennard scaling - Features the first publication of several DSAs from industry - Features extensive updates to the chapter on warehouse-scale computing, with the first public information on the newest Google WSC - Offers updates to other chapters including new material dealing with the use of stacked DRAM; data on the performance of new NVIDIA Pascal GPU vs. new AVX-512 Intel Skylake CPU; and extensive additions to content covering multicore architecture and organization - Includes "Putting It All Together" sections near the end of every chapter, providing real-world technology examples that demonstrate the principles covered in each chapter - Includes review appendices in the printed text and additional reference appendices available online - Includes updated and improved case studies and exercises - ACM named John L. Hennessy and David A. Patterson, recipients of the 2017 ACM A.M. Turing Award for pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry
Publisher: Morgan Kaufmann
ISBN: 0128119063
Category : Computers
Languages : en
Pages : 939
Book Description
Computer Architecture: A Quantitative Approach, Sixth Edition has been considered essential reading by instructors, students and practitioners of computer design for over 20 years. The sixth edition of this classic textbook from Hennessy and Patterson, winners of the 2017 ACM A.M. Turing Award recognizing contributions of lasting and major technical importance to the computing field, is fully revised with the latest developments in processor and system architecture. The text now features examples from the RISC-V (RISC Five) instruction set architecture, a modern RISC instruction set developed and designed to be a free and openly adoptable standard. It also includes a new chapter on domain-specific architectures and an updated chapter on warehouse-scale computing that features the first public information on Google's newest WSC. True to its original mission of demystifying computer architecture, this edition continues the longstanding tradition of focusing on areas where the most exciting computing innovation is happening, while always keeping an emphasis on good engineering design. - Winner of a 2019 Textbook Excellence Award (Texty) from the Textbook and Academic Authors Association - Includes a new chapter on domain-specific architectures, explaining how they are the only path forward for improved performance and energy efficiency given the end of Moore's Law and Dennard scaling - Features the first publication of several DSAs from industry - Features extensive updates to the chapter on warehouse-scale computing, with the first public information on the newest Google WSC - Offers updates to other chapters including new material dealing with the use of stacked DRAM; data on the performance of new NVIDIA Pascal GPU vs. new AVX-512 Intel Skylake CPU; and extensive additions to content covering multicore architecture and organization - Includes "Putting It All Together" sections near the end of every chapter, providing real-world technology examples that demonstrate the principles covered in each chapter - Includes review appendices in the printed text and additional reference appendices available online - Includes updated and improved case studies and exercises - ACM named John L. Hennessy and David A. Patterson, recipients of the 2017 ACM A.M. Turing Award for pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry
Readings in Computer Architecture
Author: Mark D. Hill
Publisher: Gulf Professional Publishing
ISBN: 9781558605398
Category : Computers
Languages : en
Pages : 740
Book Description
Offering a carefully reviewed selection of over 50 papers illustrating the breadth and depth of computer architecture, this text includes insightful introductions to guide readers through the primary sources.
Publisher: Gulf Professional Publishing
ISBN: 9781558605398
Category : Computers
Languages : en
Pages : 740
Book Description
Offering a carefully reviewed selection of over 50 papers illustrating the breadth and depth of computer architecture, this text includes insightful introductions to guide readers through the primary sources.
Adaptable Embedded Systems
Author: Antonio Carlos Schneider Beck
Publisher: Springer Science & Business Media
ISBN: 1461417465
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
As embedded systems become more complex, designers face a number of challenges at different levels: they need to boost performance, while keeping energy consumption as low as possible, they need to reuse existent software code, and at the same time they need to take advantage of the extra logic available in the chip, represented by multiple processors working together. This book describes several strategies to achieve such different and interrelated goals, by the use of adaptability. Coverage includes reconfigurable systems, dynamic optimization techniques such as binary translation and trace reuse, new memory architectures including homogeneous and heterogeneous multiprocessor systems, communication issues and NOCs, fault tolerance against fabrication defects and soft errors, and finally, how one can combine several of these techniques together to achieve higher levels of performance and adaptability. The discussion also includes how to employ specialized software to improve this new adaptive system, and how this new kind of software must be designed and programmed.
Publisher: Springer Science & Business Media
ISBN: 1461417465
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
As embedded systems become more complex, designers face a number of challenges at different levels: they need to boost performance, while keeping energy consumption as low as possible, they need to reuse existent software code, and at the same time they need to take advantage of the extra logic available in the chip, represented by multiple processors working together. This book describes several strategies to achieve such different and interrelated goals, by the use of adaptability. Coverage includes reconfigurable systems, dynamic optimization techniques such as binary translation and trace reuse, new memory architectures including homogeneous and heterogeneous multiprocessor systems, communication issues and NOCs, fault tolerance against fabrication defects and soft errors, and finally, how one can combine several of these techniques together to achieve higher levels of performance and adaptability. The discussion also includes how to employ specialized software to improve this new adaptive system, and how this new kind of software must be designed and programmed.
Processor Architecture
Author: Jurij Silc
Publisher: Springer Science & Business Media
ISBN: 3642585892
Category : Computers
Languages : en
Pages : 406
Book Description
A survey of architectural mechanisms and implementation techniques for exploiting fine- and coarse-grained parallelism within microprocessors. Beginning with a review of past techniques, the monograph provides a comprehensive account of state-of-the-art techniques used in microprocessors, covering both the concepts involved and implementations in sample processors. The whole is rounded off with a thorough review of the research techniques that will lead to future microprocessors. XXXXXXX Neuer Text This monograph surveys architectural mechanisms and implementation techniques for exploiting fine-grained and coarse-grained parallelism within microprocessors. It presents a comprehensive account of state-of-the-art techniques used in microprocessors that covers both the concepts involved and possible implementations. The authors also provide application-oriented methods and a thorough review of the research techniques that will lead to the development of future processors.
Publisher: Springer Science & Business Media
ISBN: 3642585892
Category : Computers
Languages : en
Pages : 406
Book Description
A survey of architectural mechanisms and implementation techniques for exploiting fine- and coarse-grained parallelism within microprocessors. Beginning with a review of past techniques, the monograph provides a comprehensive account of state-of-the-art techniques used in microprocessors, covering both the concepts involved and implementations in sample processors. The whole is rounded off with a thorough review of the research techniques that will lead to future microprocessors. XXXXXXX Neuer Text This monograph surveys architectural mechanisms and implementation techniques for exploiting fine-grained and coarse-grained parallelism within microprocessors. It presents a comprehensive account of state-of-the-art techniques used in microprocessors that covers both the concepts involved and possible implementations. The authors also provide application-oriented methods and a thorough review of the research techniques that will lead to the development of future processors.
Interaction Between Compilers and Computer Architectures
Author: Gyungho Lee
Publisher: Springer Science & Business Media
ISBN: 1475733372
Category : Computers
Languages : en
Pages : 149
Book Description
Effective compilers allow for a more efficient execution of application programs for a given computer architecture, while well-conceived architectural features can support more effective compiler optimization techniques. A well thought-out strategy of trade-offs between compilers and computer architectures is the key to the successful designing of highly efficient and effective computer systems. From embedded micro-controllers to large-scale multiprocessor systems, it is important to understand the interaction between compilers and computer architectures. The goal of the Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT) is to promote new ideas and to present recent developments in compiler techniques and computer architectures that enhance each other's capabilities and performance. Interaction Between Compilers and Computer Architectures is an updated and revised volume consisting of seven papers originally presented at the Fifth Workshop on Interaction between Compilers and Computer Architectures (INTERACT-5), which was held in conjunction with the IEEE HPCA-7 in Monterrey, Mexico in 2001. This volume explores recent developments and ideas for better integration of the interaction between compilers and computer architectures in designing modern processors and computer systems. Interaction Between Compilers and Computer Architectures is suitable as a secondary text for a graduate level course, and as a reference for researchers and practitioners in industry.
Publisher: Springer Science & Business Media
ISBN: 1475733372
Category : Computers
Languages : en
Pages : 149
Book Description
Effective compilers allow for a more efficient execution of application programs for a given computer architecture, while well-conceived architectural features can support more effective compiler optimization techniques. A well thought-out strategy of trade-offs between compilers and computer architectures is the key to the successful designing of highly efficient and effective computer systems. From embedded micro-controllers to large-scale multiprocessor systems, it is important to understand the interaction between compilers and computer architectures. The goal of the Annual Workshop on Interaction between Compilers and Computer Architectures (INTERACT) is to promote new ideas and to present recent developments in compiler techniques and computer architectures that enhance each other's capabilities and performance. Interaction Between Compilers and Computer Architectures is an updated and revised volume consisting of seven papers originally presented at the Fifth Workshop on Interaction between Compilers and Computer Architectures (INTERACT-5), which was held in conjunction with the IEEE HPCA-7 in Monterrey, Mexico in 2001. This volume explores recent developments and ideas for better integration of the interaction between compilers and computer architectures in designing modern processors and computer systems. Interaction Between Compilers and Computer Architectures is suitable as a secondary text for a graduate level course, and as a reference for researchers and practitioners in industry.
Euro-Par'98 Parallel Processing
Author: David Pritchard
Publisher: Springer Science & Business Media
ISBN: 9783540649526
Category : Computers
Languages : en
Pages : 1192
Book Description
Proceedings -- Parallel Computing.
Publisher: Springer Science & Business Media
ISBN: 9783540649526
Category : Computers
Languages : en
Pages : 1192
Book Description
Proceedings -- Parallel Computing.
Parallel Processing and Applied Mathematics
Author: Roman Wyrzykowski
Publisher: Springer
ISBN: 354024669X
Category : Computers
Languages : en
Pages : 1193
Book Description
It is our pleasure to provide you with the volume containing the proceedings of the 5th International Conference on Parallel Processing and Applied Mathe- tics, which was held in Cz ̧ estochowa, a Polish city famous for its Jasna Gora Monastery, on September 7–10, 2003. The ?rst PPAM conference was held in 1994 and was organized by the Institute of Mathematics and Computer Science of the Cz ̧ estochowa University of Technology in its hometown. The main idea behind the event was to provide a forum for researchers involved in applied and computational mathematics and parallel computing to exchange ideas in a relaxed atmosphere. Conference organizers hoped that this arrangement would result in cross-pollination and lead to successful research collaborations. In - dition, they hoped that the initially mostly Polish conference would grow into an international event. The fact that these assumptions were correct was proven by the growth of the event. While the ?rst conference consisted of 41 presen- tions, the conference reached 150 participants in Na l ̧ ecz ́ ow in 2001. In this way the PPAM conference has become one of the premiere Polish conferences, and de?nitely the most important one in the area of parallel/distributed computing andappliedmathematics. This year’s meeting gathered almost 200 participants from 32 countries. A strict refereeing process resulted in the acceptance of approximately 150 cont- buted presentations, while the rejection rate was approximately 33%.
Publisher: Springer
ISBN: 354024669X
Category : Computers
Languages : en
Pages : 1193
Book Description
It is our pleasure to provide you with the volume containing the proceedings of the 5th International Conference on Parallel Processing and Applied Mathe- tics, which was held in Cz ̧ estochowa, a Polish city famous for its Jasna Gora Monastery, on September 7–10, 2003. The ?rst PPAM conference was held in 1994 and was organized by the Institute of Mathematics and Computer Science of the Cz ̧ estochowa University of Technology in its hometown. The main idea behind the event was to provide a forum for researchers involved in applied and computational mathematics and parallel computing to exchange ideas in a relaxed atmosphere. Conference organizers hoped that this arrangement would result in cross-pollination and lead to successful research collaborations. In - dition, they hoped that the initially mostly Polish conference would grow into an international event. The fact that these assumptions were correct was proven by the growth of the event. While the ?rst conference consisted of 41 presen- tions, the conference reached 150 participants in Na l ̧ ecz ́ ow in 2001. In this way the PPAM conference has become one of the premiere Polish conferences, and de?nitely the most important one in the area of parallel/distributed computing andappliedmathematics. This year’s meeting gathered almost 200 participants from 32 countries. A strict refereeing process resulted in the acceptance of approximately 150 cont- buted presentations, while the rejection rate was approximately 33%.
High Performance Memory Systems
Author: Haldun Hadimioglu
Publisher: Springer Science & Business Media
ISBN: 1441989870
Category : Computers
Languages : en
Pages : 298
Book Description
The State of Memory Technology Over the past decade there has been rapid growth in the speed of micropro cessors. CPU speeds are approximately doubling every eighteen months, while main memory speed doubles about every ten years. The International Tech nology Roadmap for Semiconductors (ITRS) study suggests that memory will remain on its current growth path. The ITRS short-and long-term targets indicate continued scaling improvements at about the current rate by 2016. This translates to bit densities increasing at two times every two years until the introduction of 8 gigabit dynamic random access memory (DRAM) chips, after which densities will increase four times every five years. A similar growth pattern is forecast for other high-density chip areas and high-performance logic (e.g., microprocessors and application specific inte grated circuits (ASICs)). In the future, molecular devices, 64 gigabit DRAMs and 28 GHz clock signals are targeted. Although densities continue to grow, we still do not see significant advances that will improve memory speed. These trends have created a problem that has been labeled the Memory Wall or Memory Gap.
Publisher: Springer Science & Business Media
ISBN: 1441989870
Category : Computers
Languages : en
Pages : 298
Book Description
The State of Memory Technology Over the past decade there has been rapid growth in the speed of micropro cessors. CPU speeds are approximately doubling every eighteen months, while main memory speed doubles about every ten years. The International Tech nology Roadmap for Semiconductors (ITRS) study suggests that memory will remain on its current growth path. The ITRS short-and long-term targets indicate continued scaling improvements at about the current rate by 2016. This translates to bit densities increasing at two times every two years until the introduction of 8 gigabit dynamic random access memory (DRAM) chips, after which densities will increase four times every five years. A similar growth pattern is forecast for other high-density chip areas and high-performance logic (e.g., microprocessors and application specific inte grated circuits (ASICs)). In the future, molecular devices, 64 gigabit DRAMs and 28 GHz clock signals are targeted. Although densities continue to grow, we still do not see significant advances that will improve memory speed. These trends have created a problem that has been labeled the Memory Wall or Memory Gap.
Single-Instruction Multiple-Data Execution
Author: Christopher J. Hughes
Publisher: Springer Nature
ISBN: 3031017463
Category : Technology & Engineering
Languages : en
Pages : 105
Book Description
Having hit power limitations to even more aggressive out-of-order execution in processor cores, many architects in the past decade have turned to single-instruction-multiple-data (SIMD) execution to increase single-threaded performance. SIMD execution, or having a single instruction drive execution of an identical operation on multiple data items, was already well established as a technique to efficiently exploit data parallelism. Furthermore, support for it was already included in many commodity processors. However, in the past decade, SIMD execution has seen a dramatic increase in the set of applications using it, which has motivated big improvements in hardware support in mainstream microprocessors. The easiest way to provide a big performance boost to SIMD hardware is to make it wider—i.e., increase the number of data items hardware operates on simultaneously. Indeed, microprocessor vendors have done this. However, as we exploit more data parallelism in applications, certain challenges can negatively impact performance. In particular, conditional execution, non-contiguous memory accesses, and the presence of some dependences across data items are key roadblocks to achieving peak performance with SIMD execution. This book first describes data parallelism, and why it is so common in popular applications. We then describe SIMD execution, and explain where its performance and energy benefits come from compared to other techniques to exploit parallelism. Finally, we describe SIMD hardware support in current commodity microprocessors. This includes both expected design tradeoffs, as well as unexpected ones, as we work to overcome challenges encountered when trying to map real software to SIMD execution.
Publisher: Springer Nature
ISBN: 3031017463
Category : Technology & Engineering
Languages : en
Pages : 105
Book Description
Having hit power limitations to even more aggressive out-of-order execution in processor cores, many architects in the past decade have turned to single-instruction-multiple-data (SIMD) execution to increase single-threaded performance. SIMD execution, or having a single instruction drive execution of an identical operation on multiple data items, was already well established as a technique to efficiently exploit data parallelism. Furthermore, support for it was already included in many commodity processors. However, in the past decade, SIMD execution has seen a dramatic increase in the set of applications using it, which has motivated big improvements in hardware support in mainstream microprocessors. The easiest way to provide a big performance boost to SIMD hardware is to make it wider—i.e., increase the number of data items hardware operates on simultaneously. Indeed, microprocessor vendors have done this. However, as we exploit more data parallelism in applications, certain challenges can negatively impact performance. In particular, conditional execution, non-contiguous memory accesses, and the presence of some dependences across data items are key roadblocks to achieving peak performance with SIMD execution. This book first describes data parallelism, and why it is so common in popular applications. We then describe SIMD execution, and explain where its performance and energy benefits come from compared to other techniques to exploit parallelism. Finally, we describe SIMD hardware support in current commodity microprocessors. This includes both expected design tradeoffs, as well as unexpected ones, as we work to overcome challenges encountered when trying to map real software to SIMD execution.
The Computer Engineering Handbook
Author: Vojin G. Oklobdzija
Publisher: CRC Press
ISBN: 9780849308857
Category : Computers
Languages : en
Pages : 1422
Book Description
There is arguably no field in greater need of a comprehensive handbook than computer engineering. The unparalleled rate of technological advancement, the explosion of computer applications, and the now-in-progress migration to a wireless world have made it difficult for engineers to keep up with all the developments in specialties outside their own. References published only a few years ago are now sorely out of date. The Computer Engineering Handbook changes all of that. Under the leadership of Vojin Oklobdzija and a stellar editorial board, some of the industry's foremost experts have joined forces to create what promises to be the definitive resource for computer design and engineering. Instead of focusing on basic, introductory material, it forms a comprehensive, state-of-the-art review of the field's most recent achievements, outstanding issues, and future directions. The world of computer engineering is vast and evolving so rapidly that what is cutting-edge today may be obsolete in a few months. While exploring the new developments, trends, and future directions of the field, The Computer Engineering Handbook captures what is fundamental and of lasting value.
Publisher: CRC Press
ISBN: 9780849308857
Category : Computers
Languages : en
Pages : 1422
Book Description
There is arguably no field in greater need of a comprehensive handbook than computer engineering. The unparalleled rate of technological advancement, the explosion of computer applications, and the now-in-progress migration to a wireless world have made it difficult for engineers to keep up with all the developments in specialties outside their own. References published only a few years ago are now sorely out of date. The Computer Engineering Handbook changes all of that. Under the leadership of Vojin Oklobdzija and a stellar editorial board, some of the industry's foremost experts have joined forces to create what promises to be the definitive resource for computer design and engineering. Instead of focusing on basic, introductory material, it forms a comprehensive, state-of-the-art review of the field's most recent achievements, outstanding issues, and future directions. The world of computer engineering is vast and evolving so rapidly that what is cutting-edge today may be obsolete in a few months. While exploring the new developments, trends, and future directions of the field, The Computer Engineering Handbook captures what is fundamental and of lasting value.