Author: Carl W. Roberts
Publisher: Routledge
ISBN: 1000149242
Category : Language Arts & Disciplines
Languages : en
Pages : 312
Book Description
This book provides descriptions and illustrations of cutting-edge text analysis methods for communication and marketing research; cultural, historical-comparative, and event analysis; curriculum evaluation; psychological diagnosis; language development research; and for any research in which statistical inferences are drawn from samples of texts. Although the book is accessible to readers having no experience with content analysis, the text analysis expert will find substantial new material in its pages. In particular, this collection describes developments in semantic and network text analysis methodologies that heretofore have been accessible only among a smattering of methodology journals. The book's international and cross-disciplinary content illustrates the breadth of quantitative text analysis applications. These applications demonstrate the methods' utility for international research, as well as for practitioners from the fields of sociology, political science, journalism/communication, computer science, marketing, education, and English. This is an "ecumenical" collection that contains applications not only of the most recent semantic and network text analysis methods, but also of the more traditional thematic method of text analysis. In fact, it is originally with this volume that these two "relational" approaches to text analysis are defined and contrasted with more traditional "thematic" text analysis methods. The emphasis here is on application. The book's chapters provide guidance regarding the sorts of inferences that each method affords, and up-to-date descriptions of the human and technological resources required to apply the methods. Its purpose is as a resource for making quantitative text analysis methods more accessible to social science researchers.
Text Analysis for the Social Sciences
Author: Carl W. Roberts
Publisher: Routledge
ISBN: 1000149242
Category : Language Arts & Disciplines
Languages : en
Pages : 312
Book Description
This book provides descriptions and illustrations of cutting-edge text analysis methods for communication and marketing research; cultural, historical-comparative, and event analysis; curriculum evaluation; psychological diagnosis; language development research; and for any research in which statistical inferences are drawn from samples of texts. Although the book is accessible to readers having no experience with content analysis, the text analysis expert will find substantial new material in its pages. In particular, this collection describes developments in semantic and network text analysis methodologies that heretofore have been accessible only among a smattering of methodology journals. The book's international and cross-disciplinary content illustrates the breadth of quantitative text analysis applications. These applications demonstrate the methods' utility for international research, as well as for practitioners from the fields of sociology, political science, journalism/communication, computer science, marketing, education, and English. This is an "ecumenical" collection that contains applications not only of the most recent semantic and network text analysis methods, but also of the more traditional thematic method of text analysis. In fact, it is originally with this volume that these two "relational" approaches to text analysis are defined and contrasted with more traditional "thematic" text analysis methods. The emphasis here is on application. The book's chapters provide guidance regarding the sorts of inferences that each method affords, and up-to-date descriptions of the human and technological resources required to apply the methods. Its purpose is as a resource for making quantitative text analysis methods more accessible to social science researchers.
Publisher: Routledge
ISBN: 1000149242
Category : Language Arts & Disciplines
Languages : en
Pages : 312
Book Description
This book provides descriptions and illustrations of cutting-edge text analysis methods for communication and marketing research; cultural, historical-comparative, and event analysis; curriculum evaluation; psychological diagnosis; language development research; and for any research in which statistical inferences are drawn from samples of texts. Although the book is accessible to readers having no experience with content analysis, the text analysis expert will find substantial new material in its pages. In particular, this collection describes developments in semantic and network text analysis methodologies that heretofore have been accessible only among a smattering of methodology journals. The book's international and cross-disciplinary content illustrates the breadth of quantitative text analysis applications. These applications demonstrate the methods' utility for international research, as well as for practitioners from the fields of sociology, political science, journalism/communication, computer science, marketing, education, and English. This is an "ecumenical" collection that contains applications not only of the most recent semantic and network text analysis methods, but also of the more traditional thematic method of text analysis. In fact, it is originally with this volume that these two "relational" approaches to text analysis are defined and contrasted with more traditional "thematic" text analysis methods. The emphasis here is on application. The book's chapters provide guidance regarding the sorts of inferences that each method affords, and up-to-date descriptions of the human and technological resources required to apply the methods. Its purpose is as a resource for making quantitative text analysis methods more accessible to social science researchers.
Text Mining for Qualitative Data Analysis in the Social Sciences
Author: Gregor Wiedemann
Publisher: Springer
ISBN: 3658153091
Category : Social Science
Languages : en
Pages : 307
Book Description
Gregor Wiedemann evaluates text mining applications for social science studies with respect to conceptual integration of consciously selected methods, systematic optimization of algorithms and workflows, and methodological reflections relating to empirical research. In an exemplary study, he introduces workflows to analyze a corpus of around 600,000 newspaper articles on the subject of “democratic demarcation” in Germany. He provides a valuable resource for innovative measures to social scientists and computer scientists in the field of applied natural language processing.
Publisher: Springer
ISBN: 3658153091
Category : Social Science
Languages : en
Pages : 307
Book Description
Gregor Wiedemann evaluates text mining applications for social science studies with respect to conceptual integration of consciously selected methods, systematic optimization of algorithms and workflows, and methodological reflections relating to empirical research. In an exemplary study, he introduces workflows to analyze a corpus of around 600,000 newspaper articles on the subject of “democratic demarcation” in Germany. He provides a valuable resource for innovative measures to social scientists and computer scientists in the field of applied natural language processing.
Text Mining
Author: Gabe Ignatow
Publisher: SAGE Publications
ISBN: 1483369323
Category : Social Science
Languages : en
Pages : 189
Book Description
Online communities generate massive volumes of natural language data and the social sciences continue to learn how to best make use of this new information and the technology available for analyzing it. Text Mining brings together a broad range of contemporary qualitative and quantitative methods to provide strategic and practical guidance on analyzing large text collections. This accessible book, written by a sociologist and a computer scientist, surveys the fast-changing landscape of data sources, programming languages, software packages, and methods of analysis available today. Suitable for novice and experienced researchers alike, the book will help readers use text mining techniques more efficiently and productively.
Publisher: SAGE Publications
ISBN: 1483369323
Category : Social Science
Languages : en
Pages : 189
Book Description
Online communities generate massive volumes of natural language data and the social sciences continue to learn how to best make use of this new information and the technology available for analyzing it. Text Mining brings together a broad range of contemporary qualitative and quantitative methods to provide strategic and practical guidance on analyzing large text collections. This accessible book, written by a sociologist and a computer scientist, surveys the fast-changing landscape of data sources, programming languages, software packages, and methods of analysis available today. Suitable for novice and experienced researchers alike, the book will help readers use text mining techniques more efficiently and productively.
Text Analysis with R
Author: Matthew L. Jockers
Publisher: Springer Nature
ISBN: 3030396436
Category : Computers
Languages : en
Pages : 283
Book Description
Now in its second edition, Text Analysis with R provides a practical introduction to computational text analysis using the open source programming language R. R is an extremely popular programming language, used throughout the sciences; due to its accessibility, R is now used increasingly in other research areas. In this volume, readers immediately begin working with text, and each chapter examines a new technique or process, allowing readers to obtain a broad exposure to core R procedures and a fundamental understanding of the possibilities of computational text analysis at both the micro and the macro scale. Each chapter builds on its predecessor as readers move from small scale “microanalysis” of single texts to large scale “macroanalysis” of text corpora, and each concludes with a set of practice exercises that reinforce and expand upon the chapter lessons. The book’s focus is on making the technical palatable and making the technical useful and immediately gratifying. Text Analysis with R is written with students and scholars of literature in mind but will be applicable to other humanists and social scientists wishing to extend their methodological toolkit to include quantitative and computational approaches to the study of text. Computation provides access to information in text that readers simply cannot gather using traditional qualitative methods of close reading and human synthesis. This new edition features two new chapters: one that introduces dplyr and tidyr in the context of parsing and analyzing dramatic texts to extract speaker and receiver data, and one on sentiment analysis using the syuzhet package. It is also filled with updated material in every chapter to integrate new developments in the field, current practices in R style, and the use of more efficient algorithms.
Publisher: Springer Nature
ISBN: 3030396436
Category : Computers
Languages : en
Pages : 283
Book Description
Now in its second edition, Text Analysis with R provides a practical introduction to computational text analysis using the open source programming language R. R is an extremely popular programming language, used throughout the sciences; due to its accessibility, R is now used increasingly in other research areas. In this volume, readers immediately begin working with text, and each chapter examines a new technique or process, allowing readers to obtain a broad exposure to core R procedures and a fundamental understanding of the possibilities of computational text analysis at both the micro and the macro scale. Each chapter builds on its predecessor as readers move from small scale “microanalysis” of single texts to large scale “macroanalysis” of text corpora, and each concludes with a set of practice exercises that reinforce and expand upon the chapter lessons. The book’s focus is on making the technical palatable and making the technical useful and immediately gratifying. Text Analysis with R is written with students and scholars of literature in mind but will be applicable to other humanists and social scientists wishing to extend their methodological toolkit to include quantitative and computational approaches to the study of text. Computation provides access to information in text that readers simply cannot gather using traditional qualitative methods of close reading and human synthesis. This new edition features two new chapters: one that introduces dplyr and tidyr in the context of parsing and analyzing dramatic texts to extract speaker and receiver data, and one on sentiment analysis using the syuzhet package. It is also filled with updated material in every chapter to integrate new developments in the field, current practices in R style, and the use of more efficient algorithms.
Text as Data
Author: Justin Grimmer
Publisher: Princeton University Press
ISBN: 0691207550
Category : Computers
Languages : en
Pages : 360
Book Description
A guide for using computational text analysis to learn about the social world From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organized around the core tasks in research projects using text—representation, discovery, measurement, prediction, and causal inference. The authors offer a sequential, iterative, and inductive approach to research design. Each research task is presented complete with real-world applications, example methods, and a distinct style of task-focused research. Bridging many divides—computer science and social science, the qualitative and the quantitative, and industry and academia—Text as Data is an ideal resource for anyone wanting to analyze large collections of text in an era when data is abundant and computation is cheap, but the enduring challenges of social science remain. Overview of how to use text as data Research design for a world of data deluge Examples from across the social sciences and industry
Publisher: Princeton University Press
ISBN: 0691207550
Category : Computers
Languages : en
Pages : 360
Book Description
A guide for using computational text analysis to learn about the social world From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organized around the core tasks in research projects using text—representation, discovery, measurement, prediction, and causal inference. The authors offer a sequential, iterative, and inductive approach to research design. Each research task is presented complete with real-world applications, example methods, and a distinct style of task-focused research. Bridging many divides—computer science and social science, the qualitative and the quantitative, and industry and academia—Text as Data is an ideal resource for anyone wanting to analyze large collections of text in an era when data is abundant and computation is cheap, but the enduring challenges of social science remain. Overview of how to use text as data Research design for a world of data deluge Examples from across the social sciences and industry
Data Analysis for Social Science
Author: Elena Llaudet
Publisher: Princeton University Press
ISBN: 0691199434
Category : Computers
Languages : en
Pages : 256
Book Description
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Publisher: Princeton University Press
ISBN: 0691199434
Category : Computers
Languages : en
Pages : 256
Book Description
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Qualitative Text Analysis
Author: Udo Kuckartz
Publisher: SAGE
ISBN: 1446297764
Category : Reference
Languages : en
Pages : 193
Book Description
How can you analyse narratives, interviews, field notes, or focus group data? Qualitative text analysis is ideal for these types of data and this textbook provides a hands-on introduction to the method and its theoretical underpinnings. It offers step-by-step instructions for implementing the three principal types of qualitative text analysis: thematic, evaluative, and type-building. Special attention is paid to how to present your results and use qualitative data analysis software packages, which are highly recommended for use in combination with qualitative text analysis since they allow for fast, reliable, and more accurate analysis. The book shows in detail how to use software, from transcribing the verbal data to presenting and visualizing the results. The book is intended for Master’s and Doctoral students across the social sciences and for all researchers concerned with the systematic analysis of texts of any kind.
Publisher: SAGE
ISBN: 1446297764
Category : Reference
Languages : en
Pages : 193
Book Description
How can you analyse narratives, interviews, field notes, or focus group data? Qualitative text analysis is ideal for these types of data and this textbook provides a hands-on introduction to the method and its theoretical underpinnings. It offers step-by-step instructions for implementing the three principal types of qualitative text analysis: thematic, evaluative, and type-building. Special attention is paid to how to present your results and use qualitative data analysis software packages, which are highly recommended for use in combination with qualitative text analysis since they allow for fast, reliable, and more accurate analysis. The book shows in detail how to use software, from transcribing the verbal data to presenting and visualizing the results. The book is intended for Master’s and Doctoral students across the social sciences and for all researchers concerned with the systematic analysis of texts of any kind.
Text Analysis in Python for Social Scientists
Author: Dirk Hovy
Publisher: Cambridge University Press
ISBN: 110888301X
Category : Political Science
Languages : en
Pages : 104
Book Description
Text is everywhere, and it is a fantastic resource for social scientists. However, because it is so abundant, and because language is so variable, it is often difficult to extract the information we want. There is a whole subfield of AI concerned with text analysis (natural language processing). Many of the basic analysis methods developed are now readily available as Python implementations. This Element will teach you when to use which method, the mathematical background of how it works, and the Python code to implement it.
Publisher: Cambridge University Press
ISBN: 110888301X
Category : Political Science
Languages : en
Pages : 104
Book Description
Text is everywhere, and it is a fantastic resource for social scientists. However, because it is so abundant, and because language is so variable, it is often difficult to extract the information we want. There is a whole subfield of AI concerned with text analysis (natural language processing). Many of the basic analysis methods developed are now readily available as Python implementations. This Element will teach you when to use which method, the mathematical background of how it works, and the Python code to implement it.
Data Analytics for the Social Sciences
Author: G. David Garson
Publisher: Routledge
ISBN: 1000467082
Category : Psychology
Languages : en
Pages : 705
Book Description
Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.
Publisher: Routledge
ISBN: 1000467082
Category : Psychology
Languages : en
Pages : 705
Book Description
Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.
Analyzing Text and Discourse
Author: Kristina Boréus
Publisher: SAGE
ISBN: 1473965667
Category : Social Science
Languages : en
Pages : 383
Book Description
A unique anthology of textual analysis methodologies, this book offers a thorough introduction to the key approaches and the tools students need to implement them. Every chapter contains not just the theory behind each methodology, but also its advantages and disadvantages, its problems with ontology and language, and its relationship to studying social phenomenon. Through contemporary and relatable real-world worked examples, the book illustrates different contexts in which a methodology has been successfully used and allows students to see the methods in action and extrapolate the techniques into their own research. Methods included: Content analysis Argumentation analysis Qualitative analysis of ideas Narrative analysis Metaphor analysis Multimodal discourse analysis Discourse analysis Engaging and authoritative in equal measure, this guide to textual analysis is the perfect foundation for students conducting research in the social sciences.
Publisher: SAGE
ISBN: 1473965667
Category : Social Science
Languages : en
Pages : 383
Book Description
A unique anthology of textual analysis methodologies, this book offers a thorough introduction to the key approaches and the tools students need to implement them. Every chapter contains not just the theory behind each methodology, but also its advantages and disadvantages, its problems with ontology and language, and its relationship to studying social phenomenon. Through contemporary and relatable real-world worked examples, the book illustrates different contexts in which a methodology has been successfully used and allows students to see the methods in action and extrapolate the techniques into their own research. Methods included: Content analysis Argumentation analysis Qualitative analysis of ideas Narrative analysis Metaphor analysis Multimodal discourse analysis Discourse analysis Engaging and authoritative in equal measure, this guide to textual analysis is the perfect foundation for students conducting research in the social sciences.