Author: Todd Hester
Publisher: Springer
ISBN: 3319011685
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.
TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains
Author: Todd Hester
Publisher: Springer
ISBN: 3319011685
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.
Publisher: Springer
ISBN: 3319011685
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.
TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains
Author: Todd Hester
Publisher: Springer
ISBN: 9783319011691
Category : Computers
Languages : en
Pages : 165
Book Description
This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.
Publisher: Springer
ISBN: 9783319011691
Category : Computers
Languages : en
Pages : 165
Book Description
This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.
RoboCup 2013: Robot World Cup XVII
Author: Sven Behnke
Publisher: Springer
ISBN: 3662444682
Category : Computers
Languages : en
Pages : 701
Book Description
This book includes the thoroughly refereed post-conference proceedings of the 17th Annual RoboCup International Symposium, held in Eindhoven, The Netherlands, in June 2013. The 20 revised papers presented together with 11 champion team papers, 3 best paper awards, 11 oral presentations, and 19 special track on open-source hard- and software papers were carefully reviewed and selected from 78 submissions. The papers present current research and educational activities within the fields of robotics and artificial intelligence with a special focus to robot hardware and software, perception and action, robotic cognition and learning, multi-robot systems, human-robot interaction, education and edutainment, and applications.
Publisher: Springer
ISBN: 3662444682
Category : Computers
Languages : en
Pages : 701
Book Description
This book includes the thoroughly refereed post-conference proceedings of the 17th Annual RoboCup International Symposium, held in Eindhoven, The Netherlands, in June 2013. The 20 revised papers presented together with 11 champion team papers, 3 best paper awards, 11 oral presentations, and 19 special track on open-source hard- and software papers were carefully reviewed and selected from 78 submissions. The papers present current research and educational activities within the fields of robotics and artificial intelligence with a special focus to robot hardware and software, perception and action, robotic cognition and learning, multi-robot systems, human-robot interaction, education and edutainment, and applications.
Bayesian Reasoning and Machine Learning
Author: David Barber
Publisher: Cambridge University Press
ISBN: 0521518148
Category : Computers
Languages : en
Pages : 739
Book Description
A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.
Publisher: Cambridge University Press
ISBN: 0521518148
Category : Computers
Languages : en
Pages : 739
Book Description
A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.
Learning Classifier Systems
Author: Pier L. Lanzi
Publisher: Springer
ISBN: 3540450270
Category : Computers
Languages : en
Pages : 344
Book Description
Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography.
Publisher: Springer
ISBN: 3540450270
Category : Computers
Languages : en
Pages : 344
Book Description
Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography.
Engineering Your Future
Author: David Graeme Dowling
Publisher:
ISBN: 9780730301974
Category : Engineering
Languages : en
Pages : 720
Book Description
"This is the ideal text for undergraduate students beginning their Engineering studies. It will engage the undergraduate engineering student directly with what it means to be a contemporary engineer in Australia and New Zealand. There is a strong and practical emphasis on developing the range of communication and decision-making skills that are essential for tackling engineering problems. Throughout the text and its accompanying exercises and problems, students are encouraged to reflect on and thereby improve their learning practices."--provided by publisher.
Publisher:
ISBN: 9780730301974
Category : Engineering
Languages : en
Pages : 720
Book Description
"This is the ideal text for undergraduate students beginning their Engineering studies. It will engage the undergraduate engineering student directly with what it means to be a contemporary engineer in Australia and New Zealand. There is a strong and practical emphasis on developing the range of communication and decision-making skills that are essential for tackling engineering problems. Throughout the text and its accompanying exercises and problems, students are encouraged to reflect on and thereby improve their learning practices."--provided by publisher.
Complexity
Author: Melanie Mitchell
Publisher: Oxford University Press
ISBN: 0199724571
Category : Science
Languages : en
Pages : 366
Book Description
What enables individually simple insects like ants to act with such precision and purpose as a group? How do trillions of neurons produce something as extraordinarily complex as consciousness? In this remarkably clear and companionable book, leading complex systems scientist Melanie Mitchell provides an intimate tour of the sciences of complexity, a broad set of efforts that seek to explain how large-scale complex, organized, and adaptive behavior can emerge from simple interactions among myriad individuals. Based on her work at the Santa Fe Institute and drawing on its interdisciplinary strategies, Mitchell brings clarity to the workings of complexity across a broad range of biological, technological, and social phenomena, seeking out the general principles or laws that apply to all of them. Richly illustrated, Complexity: A Guided Tour--winner of the 2010 Phi Beta Kappa Book Award in Science--offers a wide-ranging overview of the ideas underlying complex systems science, the current research at the forefront of this field, and the prospects for its contribution to solving some of the most important scientific questions of our time.
Publisher: Oxford University Press
ISBN: 0199724571
Category : Science
Languages : en
Pages : 366
Book Description
What enables individually simple insects like ants to act with such precision and purpose as a group? How do trillions of neurons produce something as extraordinarily complex as consciousness? In this remarkably clear and companionable book, leading complex systems scientist Melanie Mitchell provides an intimate tour of the sciences of complexity, a broad set of efforts that seek to explain how large-scale complex, organized, and adaptive behavior can emerge from simple interactions among myriad individuals. Based on her work at the Santa Fe Institute and drawing on its interdisciplinary strategies, Mitchell brings clarity to the workings of complexity across a broad range of biological, technological, and social phenomena, seeking out the general principles or laws that apply to all of them. Richly illustrated, Complexity: A Guided Tour--winner of the 2010 Phi Beta Kappa Book Award in Science--offers a wide-ranging overview of the ideas underlying complex systems science, the current research at the forefront of this field, and the prospects for its contribution to solving some of the most important scientific questions of our time.
Constrained Markov Decision Processes
Author: Eitan Altman
Publisher: Routledge
ISBN: 1351458248
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.
Publisher: Routledge
ISBN: 1351458248
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.
Learning in Embedded Systems
Author: Leslie Pack Kaelbling
Publisher: MIT Press
ISBN: 9780262111744
Category : Computers
Languages : en
Pages : 206
Book Description
Learning to perform complex action strategies is an important problem in the fields of artificial intelligence, robotics and machine learning. Presenting interesting, new experimental results, Learning in Embedded Systems explores algorithms that learn efficiently from trial and error experience with an external world. The text is a detailed exploration of the problem of learning action strategies in the context of designing embedded systems that adapt their behaviour to a complex, changing environment. Such systems include mobile robots, factory process controllers and long-term software databases.
Publisher: MIT Press
ISBN: 9780262111744
Category : Computers
Languages : en
Pages : 206
Book Description
Learning to perform complex action strategies is an important problem in the fields of artificial intelligence, robotics and machine learning. Presenting interesting, new experimental results, Learning in Embedded Systems explores algorithms that learn efficiently from trial and error experience with an external world. The text is a detailed exploration of the problem of learning action strategies in the context of designing embedded systems that adapt their behaviour to a complex, changing environment. Such systems include mobile robots, factory process controllers and long-term software databases.
Bio-Inspired Artificial Intelligence
Author: Dario Floreano
Publisher: MIT Press
ISBN: 0262547732
Category : Computers
Languages : en
Pages : 674
Book Description
A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.
Publisher: MIT Press
ISBN: 0262547732
Category : Computers
Languages : en
Pages : 674
Book Description
A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.