Test Plan Generation Technique for Complex Integrated Circuits

Test Plan Generation Technique for Complex Integrated Circuits PDF Author: Songjun Lee
Publisher:
ISBN:
Category : Integrated circuits
Languages : en
Pages :

Get Book Here

Book Description

Test Plan Generation Technique for Complex Integrated Circuits

Test Plan Generation Technique for Complex Integrated Circuits PDF Author: Songjun Lee
Publisher:
ISBN:
Category : Integrated circuits
Languages : en
Pages :

Get Book Here

Book Description


Integrated Circuit Test Engineering

Integrated Circuit Test Engineering PDF Author: Ian A. Grout
Publisher: Springer Science & Business Media
ISBN: 9781846280238
Category : Technology & Engineering
Languages : en
Pages : 396

Get Book Here

Book Description
Using the book and the software provided with it, the reader can build his/her own tester arrangement to investigate key aspects of analog-, digital- and mixed system circuits Plan of attack based on traditional testing, circuit design and circuit manufacture allows the reader to appreciate a testing regime from the point of view of all the participating interests Worked examples based on theoretical bookwork, practical experimentation and simulation exercises teach the reader how to test circuits thoroughly and effectively

Test and Design-for-Testability in Mixed-Signal Integrated Circuits

Test and Design-for-Testability in Mixed-Signal Integrated Circuits PDF Author: Jose Luis Huertas Díaz
Publisher: Springer Science & Business Media
ISBN: 0387235213
Category : Technology & Engineering
Languages : en
Pages : 310

Get Book Here

Book Description
Test and Design-for-Testability in Mixed-Signal Integrated Circuits deals with test and design for test of analog and mixed-signal integrated circuits. Especially in System-on-Chip (SoC), where different technologies are intertwined (analog, digital, sensors, RF); test is becoming a true bottleneck of present and future IC projects. Linking design and test in these heterogeneous systems will have a tremendous impact in terms of test time, cost and proficiency. Although it is recognized as a key issue for developing complex ICs, there is still a lack of structured references presenting the major topics in this area. The aim of this book is to present basic concepts and new ideas in a manner understandable for both professionals and students. Since this is an active research field, a comprehensive state-of-the-art overview is very valuable, introducing the main problems as well as the ways of solution that seem promising, emphasizing their basis, strengths and weaknesses. In essence, several topics are presented in detail. First of all, techniques for the efficient use of DSP-based test and CAD test tools. Standardization is another topic considered in the book, with focus on the IEEE 1149.4. Also addressed in depth is the connecting design and test by means of using high-level (behavioural) description techniques, specific examples are given. Another issue is related to test techniques for well-defined classes of integrated blocks, like data converters and phase-locked-loops. Besides these specification-driven testing techniques, fault-driven approaches are described as they offer potential solutions which are more similar to digital test methods. Finally, in Design-for-Testability and Built-In-Self-Test, two other concepts that were taken from digital design, are introduced in an analog context and illustrated for the case of integrated filters. In summary, the purpose of this book is to provide a glimpse on recent research results in the area of testing mixed-signal integrated circuits, specifically in the topics mentioned above. Much of the work reported herein has been performed within cooperative European Research Projects, in which the authors of the different chapters have actively collaborated. It is a representative snapshot of the current state-of-the-art in this emergent field.

Expert System Technology Applied to the Testing of Complex Digital Electronic Architectures

Expert System Technology Applied to the Testing of Complex Digital Electronic Architectures PDF Author: S. J. Cosgrove
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


EDA for IC System Design, Verification, and Testing

EDA for IC System Design, Verification, and Testing PDF Author: Louis Scheffer
Publisher: CRC Press
ISBN: 1351837591
Category : Technology & Engineering
Languages : en
Pages : 593

Get Book Here

Book Description
Presenting a comprehensive overview of the design automation algorithms, tools, and methodologies used to design integrated circuits, the Electronic Design Automation for Integrated Circuits Handbook is available in two volumes. The first volume, EDA for IC System Design, Verification, and Testing, thoroughly examines system-level design, microarchitectural design, logical verification, and testing. Chapters contributed by leading experts authoritatively discuss processor modeling and design tools, using performance metrics to select microprocessor cores for IC designs, design and verification languages, digital simulation, hardware acceleration and emulation, and much more. Save on the complete set.

Wafer-Level Testing and Test Planning for Integrated Circuits

Wafer-Level Testing and Test Planning for Integrated Circuits PDF Author: Sudarshan Bahukudumbi
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Get Book Here

Book Description
The relentless scaling of semiconductor devices and high integration levels have lead to a steady increase in the cost of manufacturing test for integrated circuits (ICs). The higher test cost leads to an increase in the product cost of ICs. Product cost is a major driver in the consumer electronics market, which is characterized by low profit margins and the use of a variety of core-based system-on-chip (SoC) designs. Packaging has also been recognized as a significant contributor to the product cost for SoCs. Packaging cost and the test cost for packaged chips can be reduced significantly by the use of effective test methods at the wafer level, also referred to as wafer sort. Test application time is a major practical constraint for wafer sort, even more than for package test. Therefore, not all the scan-based digital test patterns can be applied to the die under test. This thesis first presents a test-length selection technique for wafer-level testing of core-based SoCs. This optimization technique, which is based on a combination of statistical yield modeling and integer linear programming (ILP), provides the pattern count for each embedded core during wafer sort such that the probability of screening defective dies is maximized for a given upper limit on the SoC test time. A large number of wafer-probe contacts can potentially lead to higher yield loss during wafer sort. An optimization framework is therefore presented to address test access mechanism (TAM) optimization and test-length selection for wafer-level testing, when constraints are placed on the number of number of chip pins that can be contacted. Next, a correlation-based signature analysis technique is presented for mixed-signal test at the wafer-level using low-cost digital testers. The proposed method overcomes the limitations of measurement inaccuracies at the wafer-level. A generic cost model is developed to evaluate the effectiveness of wafer-level testing of analog and digital cores in a mixed-signal SoC, and to study its impact on test escapes, yield loss and packaging cost. Results are presented for a typical mixed-signal "big-D/small-A" SoC from industry, which contains a large section of flattened digital logic and several large mixed-signal cores. Wafer-level test during burn-in (WLTBI) is an emerging practice in the semiconductor industry that allows testing to be performed simultaneously with burn-in at the wafer-level. However, the testing of multiple cores of a SoC in parallel during WLTBI leads to constantly-varying device power during the duration of the test. This power variation adversely affects predictions of temperature and the time required for burn-in. A test-scheduling technique is presented for WLTBI of core-based SoCs, where the primary objective is to minimize the variation in power consumption during test. A secondary objective is to minimize the test application time. Finally, this thesis presents a test-pattern ordering technique for WLTBI. The objective here is to minimize the variation in power consumption during test application. The test-pattern ordering problem for WLTBI is solved using ILP and efficient heuristic techniques. The thesis also demonstrates how test-pattern manipulation and pattern-ordering can be combined for WLTBI. Test-pattern manipulation is carried out by carefully filling the don't-care (X) bits in test cubes. The X-fill problem is formulated and solved using an efficient polynomial-time algorithm. In summary, this research is targeted at cost-efficient wafer-level test and burn-in of current- and next-generation semiconductor devices. The proposed techniques are expected to bridge the gap between wafer sort and package test, by providing cost-effective wafer-scale test solutions. The results of this research will lead to higher shipped-product quality, lower product cost, and pave the way for known good die (KGD) devices, especially for emerging technologies such as three-dimensional integrated circuits.

Test and Design-for-Testability in Mixed-Signal Integrated Circuits

Test and Design-for-Testability in Mixed-Signal Integrated Circuits PDF Author: José Luis Huertas
Publisher: Springer Science & Business Media
ISBN: 9781402077241
Category : Technology & Engineering
Languages : en
Pages : 316

Get Book Here

Book Description
Test and Design-for-Testability in Mixed-Signal Integrated Circuits deals with test and design for test of analog and mixed-signal integrated circuits. Especially in System-on-Chip (SoC), where different technologies are intertwined (analog, digital, sensors, RF); test is becoming a true bottleneck of present and future IC projects. Linking design and test in these heterogeneous systems will have a tremendous impact in terms of test time, cost and proficiency. Although it is recognized as a key issue for developing complex ICs, there is still a lack of structured references presenting the major topics in this area. The aim of this book is to present basic concepts and new ideas in a manner understandable for both professionals and students. Since this is an active research field, a comprehensive state-of-the-art overview is very valuable, introducing the main problems as well as the ways of solution that seem promising, emphasizing their basis, strengths and weaknesses. In essence, several topics are presented in detail. First of all, techniques for the efficient use of DSP-based test and CAD test tools. Standardization is another topic considered in the book, with focus on the IEEE 1149.4. Also addressed in depth is the connecting design and test by means of using high-level (behavioural) description techniques, specific examples are given. Another issue is related to test techniques for well-defined classes of integrated blocks, like data converters and phase-locked-loops. Besides these specification-driven testing techniques, fault-driven approaches are described as they offer potential solutions which are more similar to digital test methods. Finally, in Design-for-Testability and Built-In-Self-Test, two other concepts that were taken from digital design, are introduced in an analog context and illustrated for the case of integrated filters. In summary, the purpose of this book is to provide a glimpse on recent research results in the area of testing mixed-signal integrated circuits, specifically in the topics mentioned above. Much of the work reported herein has been performed within cooperative European Research Projects, in which the authors of the different chapters have actively collaborated. It is a representative snapshot of the current state-of-the-art in this emergent field.

Introduction to Advanced System-on-Chip Test Design and Optimization

Introduction to Advanced System-on-Chip Test Design and Optimization PDF Author: Erik Larsson
Publisher: Springer Science & Business Media
ISBN: 0387256245
Category : Technology & Engineering
Languages : en
Pages : 397

Get Book Here

Book Description
SOC test design and its optimization is the topic of Introduction to Advanced System-on-Chip Test Design and Optimization. It gives an introduction to testing, describes the problems related to SOC testing, discusses the modeling granularity and the implementation into EDA (electronic design automation) tools. The book is divided into three sections: i) test concepts, ii) SOC design for test, and iii) SOC test applications. The first part covers an introduction into test problems including faults, fault types, design-flow, design-for-test techniques such as scan-testing and Boundary Scan. The second part of the book discusses SOC related problems such as system modeling, test conflicts, power consumption, test access mechanism design, test scheduling and defect-oriented scheduling. Finally, the third part focuses on SOC applications, such as integrated test scheduling and TAM design, defect-oriented scheduling, and integrating test design with the core selection process.

Wafer-Level Testing and Test During Burn-In for Integrated Circuits

Wafer-Level Testing and Test During Burn-In for Integrated Circuits PDF Author: Sudarshan Bahukudumbi
Publisher: Artech House
ISBN: 1596939907
Category : Technology & Engineering
Languages : en
Pages : 198

Get Book Here

Book Description
Wafer-level testing refers to a critical process of subjecting integrated circuits and semiconductor devices to electrical testing while they are still in wafer form. Burn-in is a temperature/bias reliability stress test used in detecting and screening out potential early life device failures. This hands-on resource provides a comprehensive analysis of these methods, showing how wafer-level testing during burn-in (WLTBI) helps lower product cost in semiconductor manufacturing. Engineers learn how to implement the testing of integrated circuits at the wafer-level under various resource constraints. Moreover, this unique book helps practitioners address the issue of enabling next generation products with previous generation testers. Practitioners also find expert insights on current industry trends in WLTBI test solutions.

Multi-Chip Module Test Strategies

Multi-Chip Module Test Strategies PDF Author: Yervant Zorian
Publisher: Springer Science & Business Media
ISBN: 1461561078
Category : Technology & Engineering
Languages : en
Pages : 161

Get Book Here

Book Description
MCMs today consist of complex and dense VLSI devices mounted into packages that allow little physical access to internal nodes. The complexity and cost associated with their test and diagnosis are major obstacles to their use. Multi-Chip Module Test Strategies presents state-of-the-art test strategies for MCMs. This volume of original research is designed for engineers interested in practical implementations of MCM test solutions and for designers looking for leading edge test and design-for-testability solutions for their next designs. Multi-Chip Module Test Strategies consists of eight contributions by leading researchers. It is designed to provide a comprehensive and well-balanced coverage of the MCM test domain. Multi-Chip Module Test Strategies has also been published as a special issue of the Journal of Electronic Testing: Theory and Applications (JETTA, Volume 10, Numbers 1 and 2).