Author: Gordon Bonan
Publisher: Cambridge University Press
ISBN: 1107043786
Category : Mathematics
Languages : en
Pages : 459
Book Description
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.
Climate Change and Terrestrial Ecosystem Modeling
Author: Gordon Bonan
Publisher: Cambridge University Press
ISBN: 1107043786
Category : Mathematics
Languages : en
Pages : 459
Book Description
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 1107043786
Category : Mathematics
Languages : en
Pages : 459
Book Description
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.
Radiative Transfer in the Atmosphere and Ocean
Author: Knut Stamnes
Publisher: Cambridge University Press
ISBN: 1107094739
Category : Science
Languages : en
Pages : 531
Book Description
This updated edition provides a foundation of theoretical and practical aspects of radiative transfer for students and researchers in atmospheric, oceanic and environmental sciences.
Publisher: Cambridge University Press
ISBN: 1107094739
Category : Science
Languages : en
Pages : 531
Book Description
This updated edition provides a foundation of theoretical and practical aspects of radiative transfer for students and researchers in atmospheric, oceanic and environmental sciences.
An Introduction to Atmospheric Radiation
Author: Liou
Publisher: Academic Press
ISBN: 0080954596
Category : Science
Languages : en
Pages : 409
Book Description
An Introduction to Atmospheric Radiation
Publisher: Academic Press
ISBN: 0080954596
Category : Science
Languages : en
Pages : 409
Book Description
An Introduction to Atmospheric Radiation
Theory of Atmospheric Radiative Transfer
Author: Manfred Wendisch
Publisher: John Wiley & Sons
ISBN: 3527408363
Category : Science
Languages : en
Pages : 338
Book Description
Aimed at the senior undergraduate and graduate level, this textbook fills the gap between general introductory texts offering little detail and very technical, advanced books written for mathematicians and theorists rather than experimentalists in the field. The result is a concise course in atmospheric radiative processes, tailored for one semester. The authors are accomplished researchers who know how to reach their intended audience and provide here the content needed to understand climate warming and remote sensing for pollution measurement. They also include supplementary reading for planet scientists and problems. Equally suitable reading for geophysicists, physical chemists, astronomers, environmental chemists and spectroscopists. A solutions manual for lecturers will be provided on www.wiley-vch.de/supplements.
Publisher: John Wiley & Sons
ISBN: 3527408363
Category : Science
Languages : en
Pages : 338
Book Description
Aimed at the senior undergraduate and graduate level, this textbook fills the gap between general introductory texts offering little detail and very technical, advanced books written for mathematicians and theorists rather than experimentalists in the field. The result is a concise course in atmospheric radiative processes, tailored for one semester. The authors are accomplished researchers who know how to reach their intended audience and provide here the content needed to understand climate warming and remote sensing for pollution measurement. They also include supplementary reading for planet scientists and problems. Equally suitable reading for geophysicists, physical chemists, astronomers, environmental chemists and spectroscopists. A solutions manual for lecturers will be provided on www.wiley-vch.de/supplements.
Non-LTE Radiative Transfer in the Atmosphere
Author: Manuel López-Puertas
Publisher: World Scientific
ISBN: 9789812811493
Category : Science
Languages : en
Pages : 512
Book Description
Ch. 1. Introduction and overview. 1.1. General introduction. 1.2. Basic properties of the Earth's atmosphere. 1.3. What is LTE? 1.4. Non-LTE situations. 1.5. The importance of non-LTE. 1.6. Some historical background. 1.7. Non-LTE models. 1.8. Experimental studies of non-LTE. 1.9. Non-LTE in planetary atmospheres. 1.10. References and further reading -- ch. 2. Molecular spectra. 2.1. Introduction. 2.2. Energy levels in diatomic molecules. 2.3. Energy levels in polyatomic molecules. 2.4. Transitions and spectral bands. 2.5. Properties of individual vibration-rotation lines. 2.6. Interactions between energy levels. 2.7. References and further reading -- ch. 3. Basic atmospheric radiative transfer. 3.1. Introduction. 3.2. Properties of radiation. 3.3. The radiative transfer equation. 3.4. The formal solution of the radiative transfer equation. 3.5. Thermodynamic equilibrium and local thermodynamic equilibrium. 3.6. The source function in non-LTE. 3.7. Non-LTE situations. 3.8. References and further reading -- ch. 4. Solutions to the radiative transfer equation in LTE. 4.1. Introduction. 4.2. Integration of the radiative transfer equation over height. 4.3. Integration of the radiative transfer equation over frequency. 4.4. Integration of the radiative transfer equation over solid angle. 4.5. References and further reading -- ch. 5. Solutions to the radiative transfer equation in non-LTE. 5.1. Introduction. 5.2. Simple solutions for radiative transfer under non-LTE. 5.3. The full solution of the radiative transfer equation in non-LTE. 5.4. Integration of the RTE in non-LTE. 5.5. Intercomparison of non-LTE codes. 5.6. Parameterizations of the non-LTE cooling rate. 5.7. The Curtis matrix method. 5.8. References and further reading -- ch. 6. Non-LTE modelling of the Earth's atmosphere I: CO2. 6.1. Introduction. 6.2. Useful approximations. 6.3. Carbon dioxide, CO2. 6.4. References and further reading -- ch. 7. Non-LTE modelling of the Earth's atmosphere II: Other infrared emitters. 7.1. Introduction. 7.2. Carbon monoxide, CO. 7.3. Ozone, O3. 7.4. Water vapour, H2O. 7.5. Methane, CH4. 7.6. Nitric oxide, NO. 7.7. Nitrogen dioxide, NO2. 7.8. Nitrous oxide, N2O. 7.9. Nitric acid, HNO3. 7.10. Hydroxyl radical, OH. 7.11. Molecular oxygen atmospheric infrared bands. 7.12. Hydrogen chloride, HC1, and hydrogen fluoride, HF. 7.13. NO+. 7.14. Atomic Oxygen, O (3P), at 63[symbol]m. 7.15. References and further reading -- ch. 8. Remote sensing of the non-LTE atmosphere. 8.1. Introduction. 8.2. The analysis of emission measurements. 8.3. Observations of carbon dioxide in emission. 8.4. Observations of ozone in emission. 8.5. Observations of water vapour in emission. 8.6. Observations of carbon monoxide in emission. 8.7. Observations of nitric oxide in emission. 8.8. Observations of other infrared emissions. 8.9. Rotational non-LTE. 8.10. Absorption measurements. 8.11. Simulated limb emission spectra at high resolution. 8.12. Simulated Nadir emission spectra at high resolution. 8.13. Non-LTE retrieval schemes. 8.14. References and further reading -- ch. 9. Cooling and heating rates. 9.1. Introduction. 9.2. CO2 15 f[symbol]m cooling. 9.3. O3 9.6[symbol]xm cooling. 9.4. H2O 6.3[symbol]m cooling. 9.5. NO 5.3[symbol]m cooling. 9.6. O(3Pi) 63[symbol]m cooling. 9.7. Summary of cooling rates. 9.8. CO2 solar heating. 9.9. References and further reading -- ch. 10. Non-LTE in planetary atmospheres. 10.1. Introduction. 10.2. The terrestrial planets: Mars and Venus. 10.3. A non-LTE model for the Martian and Venusian atmospheres. 10.4. Mars. 10.5. Venus. 10.6. Outer planets. 10.7. Titan. 10.8. Comets. 10.9. References and further reading.
Publisher: World Scientific
ISBN: 9789812811493
Category : Science
Languages : en
Pages : 512
Book Description
Ch. 1. Introduction and overview. 1.1. General introduction. 1.2. Basic properties of the Earth's atmosphere. 1.3. What is LTE? 1.4. Non-LTE situations. 1.5. The importance of non-LTE. 1.6. Some historical background. 1.7. Non-LTE models. 1.8. Experimental studies of non-LTE. 1.9. Non-LTE in planetary atmospheres. 1.10. References and further reading -- ch. 2. Molecular spectra. 2.1. Introduction. 2.2. Energy levels in diatomic molecules. 2.3. Energy levels in polyatomic molecules. 2.4. Transitions and spectral bands. 2.5. Properties of individual vibration-rotation lines. 2.6. Interactions between energy levels. 2.7. References and further reading -- ch. 3. Basic atmospheric radiative transfer. 3.1. Introduction. 3.2. Properties of radiation. 3.3. The radiative transfer equation. 3.4. The formal solution of the radiative transfer equation. 3.5. Thermodynamic equilibrium and local thermodynamic equilibrium. 3.6. The source function in non-LTE. 3.7. Non-LTE situations. 3.8. References and further reading -- ch. 4. Solutions to the radiative transfer equation in LTE. 4.1. Introduction. 4.2. Integration of the radiative transfer equation over height. 4.3. Integration of the radiative transfer equation over frequency. 4.4. Integration of the radiative transfer equation over solid angle. 4.5. References and further reading -- ch. 5. Solutions to the radiative transfer equation in non-LTE. 5.1. Introduction. 5.2. Simple solutions for radiative transfer under non-LTE. 5.3. The full solution of the radiative transfer equation in non-LTE. 5.4. Integration of the RTE in non-LTE. 5.5. Intercomparison of non-LTE codes. 5.6. Parameterizations of the non-LTE cooling rate. 5.7. The Curtis matrix method. 5.8. References and further reading -- ch. 6. Non-LTE modelling of the Earth's atmosphere I: CO2. 6.1. Introduction. 6.2. Useful approximations. 6.3. Carbon dioxide, CO2. 6.4. References and further reading -- ch. 7. Non-LTE modelling of the Earth's atmosphere II: Other infrared emitters. 7.1. Introduction. 7.2. Carbon monoxide, CO. 7.3. Ozone, O3. 7.4. Water vapour, H2O. 7.5. Methane, CH4. 7.6. Nitric oxide, NO. 7.7. Nitrogen dioxide, NO2. 7.8. Nitrous oxide, N2O. 7.9. Nitric acid, HNO3. 7.10. Hydroxyl radical, OH. 7.11. Molecular oxygen atmospheric infrared bands. 7.12. Hydrogen chloride, HC1, and hydrogen fluoride, HF. 7.13. NO+. 7.14. Atomic Oxygen, O (3P), at 63[symbol]m. 7.15. References and further reading -- ch. 8. Remote sensing of the non-LTE atmosphere. 8.1. Introduction. 8.2. The analysis of emission measurements. 8.3. Observations of carbon dioxide in emission. 8.4. Observations of ozone in emission. 8.5. Observations of water vapour in emission. 8.6. Observations of carbon monoxide in emission. 8.7. Observations of nitric oxide in emission. 8.8. Observations of other infrared emissions. 8.9. Rotational non-LTE. 8.10. Absorption measurements. 8.11. Simulated limb emission spectra at high resolution. 8.12. Simulated Nadir emission spectra at high resolution. 8.13. Non-LTE retrieval schemes. 8.14. References and further reading -- ch. 9. Cooling and heating rates. 9.1. Introduction. 9.2. CO2 15 f[symbol]m cooling. 9.3. O3 9.6[symbol]xm cooling. 9.4. H2O 6.3[symbol]m cooling. 9.5. NO 5.3[symbol]m cooling. 9.6. O(3Pi) 63[symbol]m cooling. 9.7. Summary of cooling rates. 9.8. CO2 solar heating. 9.9. References and further reading -- ch. 10. Non-LTE in planetary atmospheres. 10.1. Introduction. 10.2. The terrestrial planets: Mars and Venus. 10.3. A non-LTE model for the Martian and Venusian atmospheres. 10.4. Mars. 10.5. Venus. 10.6. Outer planets. 10.7. Titan. 10.8. Comets. 10.9. References and further reading.
An Introduction to Atmospheric Radiation
Author: K. N. Liou
Publisher: Academic Press
ISBN: 0124514510
Category : Nature
Languages : en
Pages : 599
Book Description
Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.
Publisher: Academic Press
ISBN: 0124514510
Category : Nature
Languages : en
Pages : 599
Book Description
Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.
Global Physical Climatology
Author: Dennis L. Hartmann
Publisher: Academic Press
ISBN: 0080571638
Category : Science
Languages : en
Pages : 425
Book Description
Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices
Publisher: Academic Press
ISBN: 0080571638
Category : Science
Languages : en
Pages : 425
Book Description
Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices
Spectroscopy and Radiative Transfer of Planetary Atmospheres
Author: Kelly Chance
Publisher: Oxford University Press
ISBN: 0191638218
Category : Science
Languages : en
Pages : 159
Book Description
Spectroscopy and radiative transfer are rapidly growing fields within atmospheric and planetary science with implications for weather, climate, biogeochemical cycles, air quality on Earth, as well as the physics and evolution of planetary atmospheres in our solar system and beyond. Remote sensing and modeling atmospheric composition of the Earth, of other planets in our solar system, or of planets orbiting other stars require detailed knowledge of how radiation and matter interact in planetary atmospheres. This includes knowledge of how stellar or thermal radiation propagates through atmospheres, how that propagation affects radiative forcing of climate, how atmospheric pollutants and greenhouse gases produce unique spectroscopic signatures, how the properties of atmospheres may be quantitatively measured, and how those measurements relate to physical properties. This book provides this fundamental knowledge to a depth that will leave a student with the background to become capable of performing quantitative research on atmospheres. The book is intended for graduate students or for advanced undergraduates. It spans across principles through applications, with sufficient background for students without prior experience in either spectroscopy or radiative transfer. Courses based on this book are intended to be accompanied by the development of increasing sophisticated atmospheric and spectroscopic modeling capability (ideally, the student develops a computer model for simulation of atmospheric spectra from microwave through ultraviolet).
Publisher: Oxford University Press
ISBN: 0191638218
Category : Science
Languages : en
Pages : 159
Book Description
Spectroscopy and radiative transfer are rapidly growing fields within atmospheric and planetary science with implications for weather, climate, biogeochemical cycles, air quality on Earth, as well as the physics and evolution of planetary atmospheres in our solar system and beyond. Remote sensing and modeling atmospheric composition of the Earth, of other planets in our solar system, or of planets orbiting other stars require detailed knowledge of how radiation and matter interact in planetary atmospheres. This includes knowledge of how stellar or thermal radiation propagates through atmospheres, how that propagation affects radiative forcing of climate, how atmospheric pollutants and greenhouse gases produce unique spectroscopic signatures, how the properties of atmospheres may be quantitatively measured, and how those measurements relate to physical properties. This book provides this fundamental knowledge to a depth that will leave a student with the background to become capable of performing quantitative research on atmospheres. The book is intended for graduate students or for advanced undergraduates. It spans across principles through applications, with sufficient background for students without prior experience in either spectroscopy or radiative transfer. Courses based on this book are intended to be accompanied by the development of increasing sophisticated atmospheric and spectroscopic modeling capability (ideally, the student develops a computer model for simulation of atmospheric spectra from microwave through ultraviolet).
Terrestrial Biosphere-Atmosphere Fluxes
Author: Russell Monson
Publisher: Cambridge University Press
ISBN: 1107729580
Category : Science
Languages : en
Pages : 511
Book Description
Fluxes of trace gases, water and energy - the 'breathing of the biosphere' - are controlled by a large number of interacting physical, chemical, biological and ecological processes. In this interdisciplinary book, the authors provide the tools to understand and quantitatively analyse fluxes of energy, organic compounds such as terpenes, and trace gases including carbon dioxide, water vapour and methane. It first introduces the fundamental principles affecting the supply and demand for trace gas exchange at the leaf and soil scales: thermodynamics, diffusion, turbulence and physiology. It then builds on these principles to model the exchange of water, carbon dioxide, terpenes and stable isotopes at the ecosystem scale. Detailed mathematical derivations of commonly used relations in biosphere-atmosphere interactions are provided for reference in appendices. An accessible introduction for graduate students and a key resource for researchers in related fields, such as atmospheric science, hydrology, meteorology, climate science, biogeochemistry and ecosystem ecology.
Publisher: Cambridge University Press
ISBN: 1107729580
Category : Science
Languages : en
Pages : 511
Book Description
Fluxes of trace gases, water and energy - the 'breathing of the biosphere' - are controlled by a large number of interacting physical, chemical, biological and ecological processes. In this interdisciplinary book, the authors provide the tools to understand and quantitatively analyse fluxes of energy, organic compounds such as terpenes, and trace gases including carbon dioxide, water vapour and methane. It first introduces the fundamental principles affecting the supply and demand for trace gas exchange at the leaf and soil scales: thermodynamics, diffusion, turbulence and physiology. It then builds on these principles to model the exchange of water, carbon dioxide, terpenes and stable isotopes at the ecosystem scale. Detailed mathematical derivations of commonly used relations in biosphere-atmosphere interactions are provided for reference in appendices. An accessible introduction for graduate students and a key resource for researchers in related fields, such as atmospheric science, hydrology, meteorology, climate science, biogeochemistry and ecosystem ecology.
Thermal Microwave Radiation
Author: Institution of Engineering and Technology
Publisher: IET
ISBN: 0863415733
Category : Science
Languages : en
Pages : 583
Book Description
Combines theoretical concepts with experimental results on thermal microwave radiation to increase the understanding of the complex nature of terrestrial media. Emphasising on radiative transfer models, this book covers the terrestrial aspects, from clear to cloudy atmosphere, precipitation, ocean and land surfaces, vegetation, snow and ice.
Publisher: IET
ISBN: 0863415733
Category : Science
Languages : en
Pages : 583
Book Description
Combines theoretical concepts with experimental results on thermal microwave radiation to increase the understanding of the complex nature of terrestrial media. Emphasising on radiative transfer models, this book covers the terrestrial aspects, from clear to cloudy atmosphere, precipitation, ocean and land surfaces, vegetation, snow and ice.