Climate Change and Terrestrial Ecosystem Modeling

Climate Change and Terrestrial Ecosystem Modeling PDF Author: Gordon Bonan
Publisher: Cambridge University Press
ISBN: 1107043786
Category : Mathematics
Languages : en
Pages : 459

Get Book Here

Book Description
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.

Climate Change and Terrestrial Ecosystem Modeling

Climate Change and Terrestrial Ecosystem Modeling PDF Author: Gordon Bonan
Publisher: Cambridge University Press
ISBN: 1107043786
Category : Mathematics
Languages : en
Pages : 459

Get Book Here

Book Description
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.

Terrestrial Radiative Transfer

Terrestrial Radiative Transfer PDF Author: Harriet H. Natsuyama
Publisher: Springer Science & Business Media
ISBN: 4431685278
Category : Science
Languages : en
Pages : 294

Get Book Here

Book Description
A modern treatment of both direct and inverse problems applicable to the remote sensing of earth from space or from the air. Starting from a physical description of the process, the authors develop innovative mathematical models, fundamental mathematics for the analysis of these models, and methods for obtaining computational solutions. They also include the results of recent research using this approach, such as invariant imbedding techniques, associative memory artificial neural networks, and the automatic evaluation of derivatives. With its coverage of uniform parallel illumination, internal sources, and incident spotlight beams, this book is indispensable for researchers working to reduce the atmospheric distortion of remotely sensed terrestrial images.

Theory of Atmospheric Radiative Transfer

Theory of Atmospheric Radiative Transfer PDF Author: Manfred Wendisch
Publisher: John Wiley & Sons
ISBN: 3527408363
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
Aimed at the senior undergraduate and graduate level, this textbook fills the gap between general introductory texts offering little detail and very technical, advanced books written for mathematicians and theorists rather than experimentalists in the field. The result is a concise course in atmospheric radiative processes, tailored for one semester. The authors are accomplished researchers who know how to reach their intended audience and provide here the content needed to understand climate warming and remote sensing for pollution measurement. They also include supplementary reading for planet scientists and problems. Equally suitable reading for geophysicists, physical chemists, astronomers, environmental chemists and spectroscopists. A solutions manual for lecturers will be provided on www.wiley-vch.de/supplements.

Radiative Transfer in the Atmosphere and Ocean

Radiative Transfer in the Atmosphere and Ocean PDF Author: Gary E. Thomas
Publisher: Cambridge University Press
ISBN: 9780521890618
Category : Nature
Languages : en
Pages : 554

Get Book Here

Book Description
Provides a foundation of the theoretical and practical aspects of radiative transfer, for the atmospheric, oceanic and environmental sciences.

An Introduction to Atmospheric Radiation

An Introduction to Atmospheric Radiation PDF Author: Liou
Publisher: Academic Press
ISBN: 0080954596
Category : Science
Languages : en
Pages : 409

Get Book Here

Book Description
An Introduction to Atmospheric Radiation

Non-LTE Radiative Transfer in the Atmosphere

Non-LTE Radiative Transfer in the Atmosphere PDF Author: Manuel López-Puertas
Publisher: World Scientific
ISBN: 9789812811493
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
Ch. 1. Introduction and overview. 1.1. General introduction. 1.2. Basic properties of the Earth's atmosphere. 1.3. What is LTE? 1.4. Non-LTE situations. 1.5. The importance of non-LTE. 1.6. Some historical background. 1.7. Non-LTE models. 1.8. Experimental studies of non-LTE. 1.9. Non-LTE in planetary atmospheres. 1.10. References and further reading -- ch. 2. Molecular spectra. 2.1. Introduction. 2.2. Energy levels in diatomic molecules. 2.3. Energy levels in polyatomic molecules. 2.4. Transitions and spectral bands. 2.5. Properties of individual vibration-rotation lines. 2.6. Interactions between energy levels. 2.7. References and further reading -- ch. 3. Basic atmospheric radiative transfer. 3.1. Introduction. 3.2. Properties of radiation. 3.3. The radiative transfer equation. 3.4. The formal solution of the radiative transfer equation. 3.5. Thermodynamic equilibrium and local thermodynamic equilibrium. 3.6. The source function in non-LTE. 3.7. Non-LTE situations. 3.8. References and further reading -- ch. 4. Solutions to the radiative transfer equation in LTE. 4.1. Introduction. 4.2. Integration of the radiative transfer equation over height. 4.3. Integration of the radiative transfer equation over frequency. 4.4. Integration of the radiative transfer equation over solid angle. 4.5. References and further reading -- ch. 5. Solutions to the radiative transfer equation in non-LTE. 5.1. Introduction. 5.2. Simple solutions for radiative transfer under non-LTE. 5.3. The full solution of the radiative transfer equation in non-LTE. 5.4. Integration of the RTE in non-LTE. 5.5. Intercomparison of non-LTE codes. 5.6. Parameterizations of the non-LTE cooling rate. 5.7. The Curtis matrix method. 5.8. References and further reading -- ch. 6. Non-LTE modelling of the Earth's atmosphere I: CO2. 6.1. Introduction. 6.2. Useful approximations. 6.3. Carbon dioxide, CO2. 6.4. References and further reading -- ch. 7. Non-LTE modelling of the Earth's atmosphere II: Other infrared emitters. 7.1. Introduction. 7.2. Carbon monoxide, CO. 7.3. Ozone, O3. 7.4. Water vapour, H2O. 7.5. Methane, CH4. 7.6. Nitric oxide, NO. 7.7. Nitrogen dioxide, NO2. 7.8. Nitrous oxide, N2O. 7.9. Nitric acid, HNO3. 7.10. Hydroxyl radical, OH. 7.11. Molecular oxygen atmospheric infrared bands. 7.12. Hydrogen chloride, HC1, and hydrogen fluoride, HF. 7.13. NO+. 7.14. Atomic Oxygen, O (3P), at 63[symbol]m. 7.15. References and further reading -- ch. 8. Remote sensing of the non-LTE atmosphere. 8.1. Introduction. 8.2. The analysis of emission measurements. 8.3. Observations of carbon dioxide in emission. 8.4. Observations of ozone in emission. 8.5. Observations of water vapour in emission. 8.6. Observations of carbon monoxide in emission. 8.7. Observations of nitric oxide in emission. 8.8. Observations of other infrared emissions. 8.9. Rotational non-LTE. 8.10. Absorption measurements. 8.11. Simulated limb emission spectra at high resolution. 8.12. Simulated Nadir emission spectra at high resolution. 8.13. Non-LTE retrieval schemes. 8.14. References and further reading -- ch. 9. Cooling and heating rates. 9.1. Introduction. 9.2. CO2 15 f[symbol]m cooling. 9.3. O3 9.6[symbol]xm cooling. 9.4. H2O 6.3[symbol]m cooling. 9.5. NO 5.3[symbol]m cooling. 9.6. O(3Pi) 63[symbol]m cooling. 9.7. Summary of cooling rates. 9.8. CO2 solar heating. 9.9. References and further reading -- ch. 10. Non-LTE in planetary atmospheres. 10.1. Introduction. 10.2. The terrestrial planets: Mars and Venus. 10.3. A non-LTE model for the Martian and Venusian atmospheres. 10.4. Mars. 10.5. Venus. 10.6. Outer planets. 10.7. Titan. 10.8. Comets. 10.9. References and further reading.

The Atmosphere and Climate of Mars

The Atmosphere and Climate of Mars PDF Author: Robert M. Haberle
Publisher: Cambridge University Press
ISBN: 110817938X
Category : Science
Languages : en
Pages : 613

Get Book Here

Book Description
Humanity has long been fascinated by the planet Mars. Was its climate ever conducive to life? What is the atmosphere like today and why did it change so dramatically over time? Eleven spacecraft have successfully flown to Mars since the Viking mission of the 1970s and early 1980s. These orbiters, landers and rovers have generated vast amounts of data that now span a Martian decade (roughly eighteen years). This new volume brings together the many new ideas about the atmosphere and climate system that have emerged, including the complex interplay of the volatile and dust cycles, the atmosphere-surface interactions that connect them over time, and the diversity of the planet's environment and its complex history. Including tutorials and explanations of complicated ideas, students, researchers and non-specialists alike are able to use this resource to gain a thorough and up-to-date understanding of this most Earth-like of planetary neighbours.

Analytical Methods in Atmospheric Radiative Transfer

Analytical Methods in Atmospheric Radiative Transfer PDF Author: Alexander Kokhanovsky
Publisher: Wiley-VCH
ISBN: 9783527411436
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Provides in-depth knowledge of the physics of radiative transfer In Analytical Methods in Atmospheric Radiative Transfer, a team of distinguished researchers delivers a comprehensive exploration of solutions to practical problems of modern atmospheric physics related to solar light interaction with the terrestrial atmosphere and the remote sensing of clouds, aerosols, and gases. The authors describe newly developed analytics methods in radiative transfer that help explain atmospheric phenomena. The book includes detailed discussions of general error analyses and sensitivity tests, as well as the relationship between modern atmospheric physics and the interaction of solar light with the atmosphere. Readers will also benefit from thorough reviews of various analytical radiative transfer techniques, media with phase functions extended in the forward direction, and semi-infinite, non-absorbing, weakly absorbing, and strongly absorbing light scattering media. Analytical Methods in Atmospheric Radiative Transfer also includes: A thorough introduction to exact solutions of the radiative transfer equation, including situations of no scattering, as well as isotropic and Rayleigh scattering A comprehensive exploration of approximate solutions for scalar radiative transfer, including single and multiple scattering separation and semi-infinite media Practical discussions of approximate solutions for polarized radiative transfer, including optically thick media and the method of discrete ordinates In-depth examinations of the applications of analytical methods in atmospheric radiative transfer, including aerosol remote sensing, cloud remote sensing, and the remote sensing of trace gases Perfect for meteorologists, climatologists and graduate students studying physics, Analytical Methods in Atmospheric Radiative Transfer is also an indispensable resource for geophysicists seeking a practical exploration of modern atmospheric physics.

An Introduction to Atmospheric Radiation

An Introduction to Atmospheric Radiation PDF Author: K. N. Liou
Publisher: Academic Press
ISBN: 0124514510
Category : Nature
Languages : en
Pages : 599

Get Book Here

Book Description
Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.

A Simple Computer Model for Terrestrial and Solar Radiation Transfer

A Simple Computer Model for Terrestrial and Solar Radiation Transfer PDF Author: Ilias M. Vardavas
Publisher:
ISBN: 9780644091336
Category : Energy transfer
Languages : en
Pages : 52

Get Book Here

Book Description