Author: Theophano Mitsa
Publisher: CRC Press
ISBN: 1420089773
Category : Business & Economics
Languages : en
Pages : 398
Book Description
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
Temporal Data Mining
Author: Theophano Mitsa
Publisher: CRC Press
ISBN: 1420089773
Category : Business & Economics
Languages : en
Pages : 398
Book Description
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
Publisher: CRC Press
ISBN: 1420089773
Category : Business & Economics
Languages : en
Pages : 398
Book Description
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
Temporal Data Mining via Unsupervised Ensemble Learning
Author: Yun Yang
Publisher: Elsevier
ISBN: 9780128116548
Category : Computers
Languages : en
Pages : 0
Book Description
Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.
Publisher: Elsevier
ISBN: 9780128116548
Category : Computers
Languages : en
Pages : 0
Book Description
Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.
Time Granularities in Databases, Data Mining, and Temporal Reasoning
Author: Claudio Bettini
Publisher: Springer Science & Business Media
ISBN: 3662042282
Category : Computers
Languages : en
Pages : 232
Book Description
Calendar and time units and specialized units, such as business days and academic years, play a major role in a wide range of information system applications. System support for reasoning about these units, called granularities, is important for the efficient design, use, and implementation of such applications. This book deals with several aspects of temporal information and provides a unifying model for granularities. Practitioners can learn about critical aspects that must be taken into account when designing and implementing databases supporting temporal information.
Publisher: Springer Science & Business Media
ISBN: 3662042282
Category : Computers
Languages : en
Pages : 232
Book Description
Calendar and time units and specialized units, such as business days and academic years, play a major role in a wide range of information system applications. System support for reasoning about these units, called granularities, is important for the efficient design, use, and implementation of such applications. This book deals with several aspects of temporal information and provides a unifying model for granularities. Practitioners can learn about critical aspects that must be taken into account when designing and implementing databases supporting temporal information.
Encyclopedia of Database Systems
Author: Ling Liu
Publisher:
ISBN: 9781489979933
Category : Database management
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781489979933
Category : Database management
Languages : en
Pages :
Book Description
Frontiers in Massive Data Analysis
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309287812
Category : Mathematics
Languages : en
Pages : 191
Book Description
Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Publisher: National Academies Press
ISBN: 0309287812
Category : Mathematics
Languages : en
Pages : 191
Book Description
Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Temporal, Spatial, and Spatio-Temporal Data Mining
Author: John F. Roddick
Publisher: Springer Science & Business Media
ISBN: 3540417737
Category : Computers
Languages : en
Pages : 184
Book Description
This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining, TSDM 2000, held in Lyon, France in September 2000 during the PKDD 2000 conference. The ten revised full papers presented are complemented by an introductory workshop report and an updated bibliography for the emerging new field; this bibliography is organized in nine topical chapters and lists more than 150 entries. All in all, the volume reflects the state of the art in the area and sets the scene for future R & D activities.
Publisher: Springer Science & Business Media
ISBN: 3540417737
Category : Computers
Languages : en
Pages : 184
Book Description
This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining, TSDM 2000, held in Lyon, France in September 2000 during the PKDD 2000 conference. The ten revised full papers presented are complemented by an introductory workshop report and an updated bibliography for the emerging new field; this bibliography is organized in nine topical chapters and lists more than 150 entries. All in all, the volume reflects the state of the art in the area and sets the scene for future R & D activities.
Data Mining: Introductory And Advanced Topics
Author: Margaret H Dunham
Publisher: Pearson Education India
ISBN: 9788177587852
Category :
Languages : en
Pages : 332
Book Description
Publisher: Pearson Education India
ISBN: 9788177587852
Category :
Languages : en
Pages : 332
Book Description
Advanced Analytics and Learning on Temporal Data
Author: Vincent Lemaire
Publisher: Springer Nature
ISBN: 3030914453
Category : Computers
Languages : en
Pages : 202
Book Description
This book constitutes the refereed proceedings of the 6th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2021, held during September 13-17, 2021. The workshop was planned to take place in Bilbao, Spain, but was held virtually due to the COVID-19 pandemic. The 12 full papers presented in this book were carefully reviewed and selected from 21 submissions. They focus on the following topics: Temporal Data Clustering; Classification of Univariate and Multivariate Time Series; Multivariate Time Series Co-clustering; Efficient Event Detection; Modeling Temporal Dependencies; Advanced Forecasting and Prediction Models; Cluster-based Forecasting; Explanation Methods for Time Series Classification; Multimodal Meta-Learning for Time Series Regression; and Multivariate Time Series Anomaly Detection.
Publisher: Springer Nature
ISBN: 3030914453
Category : Computers
Languages : en
Pages : 202
Book Description
This book constitutes the refereed proceedings of the 6th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2021, held during September 13-17, 2021. The workshop was planned to take place in Bilbao, Spain, but was held virtually due to the COVID-19 pandemic. The 12 full papers presented in this book were carefully reviewed and selected from 21 submissions. They focus on the following topics: Temporal Data Clustering; Classification of Univariate and Multivariate Time Series; Multivariate Time Series Co-clustering; Efficient Event Detection; Modeling Temporal Dependencies; Advanced Forecasting and Prediction Models; Cluster-based Forecasting; Explanation Methods for Time Series Classification; Multimodal Meta-Learning for Time Series Regression; and Multivariate Time Series Anomaly Detection.
Mining of Massive Datasets
Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480
Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480
Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Knowledge Discovery from Sensor Data
Author: Mohamed Medhat Gaber
Publisher: Springer
ISBN: 3642125190
Category : Computers
Languages : en
Pages : 235
Book Description
This book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.
Publisher: Springer
ISBN: 3642125190
Category : Computers
Languages : en
Pages : 235
Book Description
This book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.