Author: Zhaojun Bai
Publisher: SIAM
ISBN: 0898714710
Category : Computers
Languages : en
Pages : 430
Book Description
Mathematics of Computing -- Numerical Analysis.
Templates for the Solution of Algebraic Eigenvalue Problems
Author: Zhaojun Bai
Publisher: SIAM
ISBN: 0898714710
Category : Computers
Languages : en
Pages : 430
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: SIAM
ISBN: 0898714710
Category : Computers
Languages : en
Pages : 430
Book Description
Mathematics of Computing -- Numerical Analysis.
Matrix Algorithms
Author: G. W. Stewart
Publisher: SIAM
ISBN: 0898718058
Category : Mathematics
Languages : en
Pages : 489
Book Description
This is the second volume in a projected five-volume survey of numerical linear algebra and matrix algorithms. It treats the numerical solution of dense and large-scale eigenvalue problems with an emphasis on algorithms and the theoretical background required to understand them. The notes and reference sections contain pointers to other methods along with historical comments. The book is divided into two parts: dense eigenproblems and large eigenproblems. The first part gives a full treatment of the widely used QR algorithm, which is then applied to the solution of generalized eigenproblems and the computation of the singular value decomposition. The second part treats Krylov sequence methods such as the Lanczos and Arnoldi algorithms and presents a new treatment of the Jacobi-Davidson method. These volumes are not intended to be encyclopedic, but provide the reader with the theoretical and practical background to read the research literature and implement or modify new algorithms.
Publisher: SIAM
ISBN: 0898718058
Category : Mathematics
Languages : en
Pages : 489
Book Description
This is the second volume in a projected five-volume survey of numerical linear algebra and matrix algorithms. It treats the numerical solution of dense and large-scale eigenvalue problems with an emphasis on algorithms and the theoretical background required to understand them. The notes and reference sections contain pointers to other methods along with historical comments. The book is divided into two parts: dense eigenproblems and large eigenproblems. The first part gives a full treatment of the widely used QR algorithm, which is then applied to the solution of generalized eigenproblems and the computation of the singular value decomposition. The second part treats Krylov sequence methods such as the Lanczos and Arnoldi algorithms and presents a new treatment of the Jacobi-Davidson method. These volumes are not intended to be encyclopedic, but provide the reader with the theoretical and practical background to read the research literature and implement or modify new algorithms.
Numerical Methods for Large Eigenvalue Problems
Author: Yousef Saad
Publisher: SIAM
ISBN: 9781611970739
Category : Mathematics
Languages : en
Pages : 292
Book Description
This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.
Publisher: SIAM
ISBN: 9781611970739
Category : Mathematics
Languages : en
Pages : 292
Book Description
This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.
Numerical Analysis: Historical Developments in the 20th Century
Author: C. Brezinski
Publisher: Elsevier
ISBN: 0444598588
Category : Mathematics
Languages : en
Pages : 512
Book Description
Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.htmlNumerical Analysis 2000'. An introductory survey paper deals with the history of the first courses on numerical analysis in several countries and with the landmarks in the development of important algorithms and concepts in the field.
Publisher: Elsevier
ISBN: 0444598588
Category : Mathematics
Languages : en
Pages : 512
Book Description
Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.htmlNumerical Analysis 2000'. An introductory survey paper deals with the history of the first courses on numerical analysis in several countries and with the landmarks in the development of important algorithms and concepts in the field.
Numerical Methods for General and Structured Eigenvalue Problems
Author: Daniel Kressner
Publisher: Springer Science & Business Media
ISBN: 3540285024
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.
Publisher: Springer Science & Business Media
ISBN: 3540285024
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.
Matrix Computations
Author: Gene H. Golub
Publisher: JHU Press
ISBN: 1421407949
Category : Mathematics
Languages : en
Pages : 781
Book Description
This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.
Publisher: JHU Press
ISBN: 1421407949
Category : Mathematics
Languages : en
Pages : 781
Book Description
This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.
Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory
Author: Peter Benner
Publisher: Springer
ISBN: 3319152602
Category : Mathematics
Languages : en
Pages : 635
Book Description
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.
Publisher: Springer
ISBN: 3319152602
Category : Mathematics
Languages : en
Pages : 635
Book Description
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.
Handbook of Linear Algebra
Author: Leslie Hogben
Publisher: CRC Press
ISBN: 1498785603
Category : Mathematics
Languages : en
Pages : 1906
Book Description
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and
Publisher: CRC Press
ISBN: 1498785603
Category : Mathematics
Languages : en
Pages : 1906
Book Description
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and
ARPACK Users' Guide
Author: Richard B. Lehoucq
Publisher: SIAM
ISBN: 0898714079
Category : Mathematics
Languages : en
Pages : 150
Book Description
This book is a guide to understanding and using the software package ARPACK to solve large algebraic eigenvalue problems. The software described is based on the implicitly restarted Arnoldi method, which has been heralded as one of the three most important advances in large scale eigenanalysis in the past ten years. The book explains the acquisition, installation, capabilities, and detailed use of the software for computing a desired subset of the eigenvalues and eigenvectors of large (sparse) standard or generalized eigenproblems. It also discusses the underlying theory and algorithmic background at a level that is accessible to the general practitioner.
Publisher: SIAM
ISBN: 0898714079
Category : Mathematics
Languages : en
Pages : 150
Book Description
This book is a guide to understanding and using the software package ARPACK to solve large algebraic eigenvalue problems. The software described is based on the implicitly restarted Arnoldi method, which has been heralded as one of the three most important advances in large scale eigenanalysis in the past ten years. The book explains the acquisition, installation, capabilities, and detailed use of the software for computing a desired subset of the eigenvalues and eigenvectors of large (sparse) standard or generalized eigenproblems. It also discusses the underlying theory and algorithmic background at a level that is accessible to the general practitioner.
Core-Chasing Algorithms for the Eigenvalue Problem
Author: Jared L. Aurentz
Publisher: SIAM
ISBN: 1611975344
Category : Science
Languages : en
Pages : 155
Book Description
Eigenvalue computations are ubiquitous in science and engineering. John Francis?s implicitly shifted QR algorithm has been the method of choice for small to medium sized eigenvalue problems since its invention in 1959. This book presents a new view of this classical algorithm. While Francis?s original procedure chases bulges, the new version chases core transformations, which allows the development of fast algorithms for eigenvalue problems with a variety of special structures. This also leads to a fast and backward stable algorithm for computing the roots of a polynomial by solving the companion matrix eigenvalue problem. The authors received a SIAM Outstanding Paper prize for this work. This book will be of interest to researchers in numerical linear algebra and their students.
Publisher: SIAM
ISBN: 1611975344
Category : Science
Languages : en
Pages : 155
Book Description
Eigenvalue computations are ubiquitous in science and engineering. John Francis?s implicitly shifted QR algorithm has been the method of choice for small to medium sized eigenvalue problems since its invention in 1959. This book presents a new view of this classical algorithm. While Francis?s original procedure chases bulges, the new version chases core transformations, which allows the development of fast algorithms for eigenvalue problems with a variety of special structures. This also leads to a fast and backward stable algorithm for computing the roots of a polynomial by solving the companion matrix eigenvalue problem. The authors received a SIAM Outstanding Paper prize for this work. This book will be of interest to researchers in numerical linear algebra and their students.