Temperature and in Vivo Human Skeletal Muscle Function and Metabolism

Temperature and in Vivo Human Skeletal Muscle Function and Metabolism PDF Author: Stuart R. Gray
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Increasing the temperature of the exercising muscle, passively or actively, leads to alterations in the contractile properties of the muscle, importantly an increase in power output. There is limited information, however, regarding the metabolic changes, if any, occurring within the muscle at higher temperatures and how these are related to the contractile changes occurring within the muscle and how such changes may, or may not, affect the efficiency of the working muscles. The greater power output produced during maximal sprint cycling, after a passive increase in Tm, was associated with an increase in the rate of anaerobic ATP turnover and muscle fibre conduction velocity. Further investigation revealed that this greater anaerobic ATP turnover within the muscle was the result of a greater activity of type HA fibres in the cadence range of 160-180 revs. min−1. When the external power output of the muscle remains constant during more prolonged cycling exercise, performed at 60 revs. min−1, there was also a greater rate of anaerobic ATP turnover in the first 2 min of exercise, with no differences in the remainder of exercise after passive elevation of Tm. There were no differences in the aerobic energy contribution or the kinetics of the V02 response between T. conditions. These changes led to a decrease in mechanical efficiency in the first 2 min of exercise, which was associated with a tendency for a greater PCr degradation in type I fibres. When T. was elevated via prior intense exercise there was decrease in mechanical efficiency, during 6 min of heavy exercise, at both 60 and 120 revs. min−1. There was also a greater "absolute" primary amplitude and decrease in the slow component after prior exercise, with the response being greater at 120 revs. min−1. The present research has demonstrated that whilst an increase in T. leads to a greater power output, during maximal exercise, mechanical efficiency is reduced as exercise progresses beyond a few seconds. Furthermore, at faster pedal rates T. affects type IIA fibres whilst at slower pedal rates (60 revs. min−1) there appears to be a preferential effect on type I fibres, highlighting the velocity specific effect of Tm.

Temperature and in Vivo Human Skeletal Muscle Function and Metabolism

Temperature and in Vivo Human Skeletal Muscle Function and Metabolism PDF Author: Stuart R. Gray
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Increasing the temperature of the exercising muscle, passively or actively, leads to alterations in the contractile properties of the muscle, importantly an increase in power output. There is limited information, however, regarding the metabolic changes, if any, occurring within the muscle at higher temperatures and how these are related to the contractile changes occurring within the muscle and how such changes may, or may not, affect the efficiency of the working muscles. The greater power output produced during maximal sprint cycling, after a passive increase in Tm, was associated with an increase in the rate of anaerobic ATP turnover and muscle fibre conduction velocity. Further investigation revealed that this greater anaerobic ATP turnover within the muscle was the result of a greater activity of type HA fibres in the cadence range of 160-180 revs. min−1. When the external power output of the muscle remains constant during more prolonged cycling exercise, performed at 60 revs. min−1, there was also a greater rate of anaerobic ATP turnover in the first 2 min of exercise, with no differences in the remainder of exercise after passive elevation of Tm. There were no differences in the aerobic energy contribution or the kinetics of the V02 response between T. conditions. These changes led to a decrease in mechanical efficiency in the first 2 min of exercise, which was associated with a tendency for a greater PCr degradation in type I fibres. When T. was elevated via prior intense exercise there was decrease in mechanical efficiency, during 6 min of heavy exercise, at both 60 and 120 revs. min−1. There was also a greater "absolute" primary amplitude and decrease in the slow component after prior exercise, with the response being greater at 120 revs. min−1. The present research has demonstrated that whilst an increase in T. leads to a greater power output, during maximal exercise, mechanical efficiency is reduced as exercise progresses beyond a few seconds. Furthermore, at faster pedal rates T. affects type IIA fibres whilst at slower pedal rates (60 revs. min−1) there appears to be a preferential effect on type I fibres, highlighting the velocity specific effect of Tm.

Muscle Metabolism During Intensive Exercise

Muscle Metabolism During Intensive Exercise PDF Author: Eva Blomstrand
Publisher:
ISBN:
Category : Body temperature
Languages : en
Pages : 64

Get Book Here

Book Description


Nutrition and Skeletal Muscle

Nutrition and Skeletal Muscle PDF Author: Stéphane Walrand
Publisher: Academic Press
ISBN: 0128104104
Category : Medical
Languages : en
Pages : 590

Get Book Here

Book Description
Nutrition and Skeletal Muscle provides coverage of the evidence of dietary components that have proven beneficial for bettering adverse changes in skeletal muscle from disuse and aging. Skeletal muscle is the largest tissue in the body, providing elements of contraction and locomotion and acting as an important contributor to whole body protein and amino metabolism, glucose disposal and lipid metabolism. However, muscle loss, atrophy or weakness can occur when there are metabolic imbalances, disuse or aging. This book addresses the topic by providing insight and research from international leaders, making it the go-to reference for those in skeletal muscle physiology. Provides an understanding of the crucial role of skeletal muscle in global metabolic homeostasis regulation Delivers the information needed to understand the utilization of crucial supplements for the preservation of skeletal muscle Presents insights on research from international leaders in the field

Skeletal Muscle Circulation

Skeletal Muscle Circulation PDF Author: Ronald J. Korthuis
Publisher: Morgan & Claypool Publishers
ISBN: 1615041834
Category : Medical
Languages : en
Pages : 147

Get Book Here

Book Description
The aim of this treatise is to summarize the current understanding of the mechanisms for blood flow control to skeletal muscle under resting conditions, how perfusion is elevated (exercise hyperemia) to meet the increased demand for oxygen and other substrates during exercise, mechanisms underlying the beneficial effects of regular physical activity on cardiovascular health, the regulation of transcapillary fluid filtration and protein flux across the microvascular exchange vessels, and the role of changes in the skeletal muscle circulation in pathologic states. Skeletal muscle is unique among organs in that its blood flow can change over a remarkably large range. Compared to blood flow at rest, muscle blood flow can increase by more than 20-fold on average during intense exercise, while perfusion of certain individual white muscles or portions of those muscles can increase by as much as 80-fold. This is compared to maximal increases of 4- to 6-fold in the coronary circulation during exercise. These increases in muscle perfusion are required to meet the enormous demands for oxygen and nutrients by the active muscles. Because of its large mass and the fact that skeletal muscles receive 25% of the cardiac output at rest, sympathetically mediated vasoconstriction in vessels supplying this tissue allows central hemodynamic variables (e.g., blood pressure) to be spared during stresses such as hypovolemic shock. Sympathetic vasoconstriction in skeletal muscle in such pathologic conditions also effectively shunts blood flow away from muscles to tissues that are more sensitive to reductions in their blood supply that might otherwise occur. Again, because of its large mass and percentage of cardiac output directed to skeletal muscle, alterations in blood vessel structure and function with chronic disease (e.g., hypertension) contribute significantly to the pathology of such disorders. Alterations in skeletal muscle vascular resistance and/or in the exchange properties of this vascular bed also modify transcapillary fluid filtration and solute movement across the microvascular barrier to influence muscle function and contribute to disease pathology. Finally, it is clear that exercise training induces an adaptive transformation to a protected phenotype in the vasculature supplying skeletal muscle and other tissues to promote overall cardiovascular health. Table of Contents: Introduction / Anatomy of Skeletal Muscle and Its Vascular Supply / Regulation of Vascular Tone in Skeletal Muscle / Exercise Hyperemia and Regulation of Tissue Oxygenation During Muscular Activity / Microvascular Fluid and Solute Exchange in Skeletal Muscle / Skeletal Muscle Circulation in Aging and Disease States: Protective Effects of Exercise / References

Muscle Regeneration

Muscle Regeneration PDF Author: Alexander Mauro
Publisher: Raven Press (ID)
ISBN:
Category : Medical
Languages : en
Pages : 582

Get Book Here

Book Description


Designing Foods

Designing Foods PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309037956
Category : Medical
Languages : en
Pages : 384

Get Book Here

Book Description
This lively book examines recent trends in animal product consumption and diet; reviews industry efforts, policies, and programs aimed at improving the nutritional attributes of animal products; and offers suggestions for further research. In addition, the volume reviews dietary and health recommendations from major health organizations and notes specific target levels for nutrients.

The Biology of Exercise

The Biology of Exercise PDF Author: Michael J. Joyner
Publisher: Perspectives Cshl
ISBN: 9781621821656
Category : Medical
Languages : en
Pages : 408

Get Book Here

Book Description
Exercise training provokes widespread transformations in the human body, requiring coordinated changes in muscle composition, blood flow, neuronal and hormonal signaling, and metabolism. These changes enhance physical performance, improve mental health, and delay the onset of aging and disease. Understanding the molecular basis of these changes is therefore important for optimizing athletic ability and for developing drugs that elicit therapeutic effects. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine examines the biological basis of exercise from the molecular to the systemic levels. Contributors discuss how transcriptional regulation, cytokine and hormonal signaling, glucose metabolism, epigenetic modifications, microRNA profiles, and mitochondrial and ribosomal functions are altered in response to exercise training, leading to improved skeletal muscle, hippocampal, and cardiovascular function. Cross talk among the pathways underlying tissue-specific and systemic responses to exercise is also considered. The authors also discuss how the understanding of such molecular mechanisms may lead to the development of drugs that mitigate aging and disease. This volume will therefore serve as a vital reference for all involved in the fields of sports science and medicine, as well as anyone seeking to understand the molecular mechanisms by which exercise promotes whole-body health.

Exercise Metabolism

Exercise Metabolism PDF Author: Mark Hargreaves
Publisher: Human Kinetics
ISBN: 9780736041034
Category : Energy metabolism
Languages : en
Pages : 320

Get Book Here

Book Description
A comprehensive reference for biochemists, sport nutritionists, exercise physiologists, and graduate students in those disciplines. Provides information on the metabolic processes that take place during exercise, examining in depth the mobilization and utilization of substrates during physical activity. Focuses primarily on the skeletal muscle, but also discusses the roles of the liver and adipose tissue. Annotation copyright by Book News, Inc., Portland, OR

Regulation of Tissue Oxygenation, Second Edition

Regulation of Tissue Oxygenation, Second Edition PDF Author: Roland N. Pittman
Publisher: Biota Publishing
ISBN: 1615047212
Category : Medical
Languages : en
Pages : 117

Get Book Here

Book Description
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.

Musculoskeletal Disorders and the Workplace

Musculoskeletal Disorders and the Workplace PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309132991
Category : Business & Economics
Languages : en
Pages : 510

Get Book Here

Book Description
Every year workers' low-back, hand, and arm problems lead to time away from jobs and reduce the nation's economic productivity. The connection of these problems to workplace activities-from carrying boxes to lifting patients to pounding computer keyboards-is the subject of major disagreements among workers, employers, advocacy groups, and researchers. Musculoskeletal Disorders and the Workplace examines the scientific basis for connecting musculoskeletal disorders with the workplace, considering people, job tasks, and work environments. A multidisciplinary panel draws conclusions about the likelihood of causal links and the effectiveness of various intervention strategies. The panel also offers recommendations for what actions can be considered on the basis of current information and for closing information gaps. This book presents the latest information on the prevalence, incidence, and costs of musculoskeletal disorders and identifies factors that influence injury reporting. It reviews the broad scope of evidence: epidemiological studies of physical and psychosocial variables, basic biology, biomechanics, and physical and behavioral responses to stress. Given the magnitude of the problem-approximately 1 million people miss some work each year-and the current trends in workplace practices, this volume will be a must for advocates for workplace health, policy makers, employers, employees, medical professionals, engineers, lawyers, and labor officials.