Techniques and Environments for Big Data Analysis

Techniques and Environments for Big Data Analysis PDF Author: B. S.P. Mishra
Publisher: Springer
ISBN: 3319275208
Category : Technology & Engineering
Languages : en
Pages : 199

Get Book Here

Book Description
This volume is aiming at a wide range of readers and researchers in the area of Big Data by presenting the recent advances in the fields of Big Data Analysis, as well as the techniques and tools used to analyze it. The book includes 10 distinct chapters providing a concise introduction to Big Data Analysis and recent Techniques and Environments for Big Data Analysis. It gives insight into how the expensive fitness evaluation of evolutionary learning can play a vital role in big data analysis by adopting Parallel, Grid, and Cloud computing environments.

Data Science and Big Data Analytics in Smart Environments

Data Science and Big Data Analytics in Smart Environments PDF Author: Marta Chinnici
Publisher: CRC Press
ISBN: 1000386058
Category : Computers
Languages : en
Pages : 304

Get Book Here

Book Description
Most applications generate large datasets, like social networking and social influence programs, smart cities applications, smart house environments, Cloud applications, public web sites, scientific experiments and simulations, data warehouse, monitoring platforms, and e-government services. Data grows rapidly, since applications produce continuously increasing volumes of both unstructured and structured data. Large-scale interconnected systems aim to aggregate and efficiently exploit the power of widely distributed resources. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance and to create a smart environment. The impact on data processing, transfer and storage is the need to re-evaluate the approaches and solutions to better answer the user needs. A variety of solutions for specific applications and platforms exist so a thorough and systematic analysis of existing solutions for data science, data analytics, methods and algorithms used in Big Data processing and storage environments is significant in designing and implementing a smart environment. Fundamental issues pertaining to smart environments (smart cities, ambient assisted leaving, smart houses, green houses, cyber physical systems, etc.) are reviewed. Most of the current efforts still do not adequately address the heterogeneity of different distributed systems, the interoperability between them, and the systems resilience. This book will primarily encompass practical approaches that promote research in all aspects of data processing, data analytics, data processing in different type of systems: Cluster Computing, Grid Computing, Peer-to-Peer, Cloud/Edge/Fog Computing, all involving elements of heterogeneity, having a large variety of tools and software to manage them. The main role of resource management techniques in this domain is to create the suitable frameworks for development of applications and deployment in smart environments, with respect to high performance. The book focuses on topics covering algorithms, architectures, management models, high performance computing techniques and large-scale distributed systems.

Advancing the Power of Learning Analytics and Big Data in Education

Advancing the Power of Learning Analytics and Big Data in Education PDF Author: Azevedo, Ana
Publisher: IGI Global
ISBN: 1799871045
Category : Education
Languages : en
Pages : 296

Get Book Here

Book Description
The term learning analytics is used in the context of the use of analytics in e-learning environments. Learning analytics is used to improve quality. It uses data about students and their activities to provide better understanding and to improve student learning. The use of learning management systems, where the activity of the students can be easily accessed, potentiated the use of learning analytics to understand their route during the learning process, help students be aware of their progress, and detect situations where students can give up the course before its completion, which is a growing problem in e-learning environments. Advancing the Power of Learning Analytics and Big Data in Education provides insights concerning the use of learning analytics, the role and impact of analytics on education, and how learning analytics are designed, employed, and assessed. The chapters will discuss factors affecting learning analytics such as human factors, geographical factors, technological factors, and ethical and legal factors. This book is ideal for teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in the use of big data and learning analytics for improved student success and educational environments.

Big Data Fundamentals

Big Data Fundamentals PDF Author: Thomas Erl
Publisher: Prentice Hall
ISBN: 0134291204
Category : Computers
Languages : en
Pages : 424

Get Book Here

Book Description
“This text should be required reading for everyone in contemporary business.” --Peter Woodhull, CEO, Modus21 “The one book that clearly describes and links Big Data concepts to business utility.” --Dr. Christopher Starr, PhD “Simply, this is the best Big Data book on the market!” --Sam Rostam, Cascadian IT Group “...one of the most contemporary approaches I’ve seen to Big Data fundamentals...” --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data’s fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 “V” characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data’s relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data’s distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning

Big Data

Big Data PDF Author: Kuan-Ching Li
Publisher: CRC Press
ISBN: 1482240564
Category : Computers
Languages : en
Pages : 478

Get Book Here

Book Description
As today's organizations are capturing exponentially larger amounts of data than ever, now is the time for organizations to rethink how they digest that data. Through advanced algorithms and analytics techniques, organizations can harness this data, discover hidden patterns, and use the newly acquired knowledge to achieve competitive advantages.Pre

Computational and Statistical Methods for Analysing Big Data with Applications

Computational and Statistical Methods for Analysing Big Data with Applications PDF Author: Shen Liu
Publisher: Academic Press
ISBN: 0081006519
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate

Data Architecture: A Primer for the Data Scientist

Data Architecture: A Primer for the Data Scientist PDF Author: W.H. Inmon
Publisher: Academic Press
ISBN: 0128169176
Category : Computers
Languages : en
Pages : 434

Get Book Here

Book Description
Over the past 5 years, the concept of big data has matured, data science has grown exponentially, and data architecture has become a standard part of organizational decision-making. Throughout all this change, the basic principles that shape the architecture of data have remained the same. There remains a need for people to take a look at the "bigger picture" and to understand where their data fit into the grand scheme of things. Data Architecture: A Primer for the Data Scientist, Second Edition addresses the larger architectural picture of how big data fits within the existing information infrastructure or data warehousing systems. This is an essential topic not only for data scientists, analysts, and managers but also for researchers and engineers who increasingly need to deal with large and complex sets of data. Until data are gathered and can be placed into an existing framework or architecture, they cannot be used to their full potential. Drawing upon years of practical experience and using numerous examples and case studies from across various industries, the authors seek to explain this larger picture into which big data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together. - New case studies include expanded coverage of textual management and analytics - New chapters on visualization and big data - Discussion of new visualizations of the end-state architecture

Big Data

Big Data PDF Author: Hassan A. Karimi
Publisher: CRC Press
ISBN: 1466586516
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
Big data has always been a major challenge in geoinformatics as geospatial data come in various types and formats, new geospatial data are acquired very fast, and geospatial databases are inherently very large. And while there have been advances in hardware and software for handling big data, they often fall short of handling geospatial big data efficiently and effectively. Big Data: Techniques and Technologies in Geoinformatics tackles these challenges head on, integrating coverage of techniques and technologies for storing, managing, and computing geospatial big data. Providing a perspective based on analysis of time, applications, and resources, this book familiarizes readers with geospatial applications that fall under the category of big data. It explores new trends in geospatial data collection, such as geo-crowdsourcing and advanced data collection technologies such as LiDAR point clouds. The book features a range of topics on big data techniques and technologies in geoinformatics including distributed computing, geospatial data analytics, social media, and volunteered geographic information. With chapters contributed by experts in geoinformatics and in domains such as computing and engineering, the book provides an understanding of the challenges and issues of big data in geoinformatics applications. The book is a single collection of current and emerging techniques, technologies, and tools that are needed to collect, analyze, manage, process, and visualize geospatial big data.

Data Science Applied to Sustainability Analysis

Data Science Applied to Sustainability Analysis PDF Author: Jennifer Dunn
Publisher: Elsevier
ISBN: 0128179775
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses

Big Data: Concepts, Methodologies, Tools, and Applications

Big Data: Concepts, Methodologies, Tools, and Applications PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1466698411
Category : Computers
Languages : en
Pages : 2523

Get Book Here

Book Description
The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. Big Data: Concepts, Methodologies, Tools, and Applications is a multi-volume compendium of research-based perspectives and solutions within the realm of large-scale and complex data sets. Taking a multidisciplinary approach, this publication presents exhaustive coverage of crucial topics in the field of big data including diverse applications, storage solutions, analysis techniques, and methods for searching and transferring large data sets, in addition to security issues. Emphasizing essential research in the field of data science, this publication is an ideal reference source for data analysts, IT professionals, researchers, and academics.