Author: Audrey Watters
Publisher: MIT Press
ISBN: 026254606X
Category : Education
Languages : en
Pages : 325
Book Description
How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to "go at their own pace" did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the "pre-verbal" machine that taught spelling. (Alternate names proposed by Skinner include "Autodidak," "Instructomat," and "Autostructor.") Telling these somewhat cautionary tales, Watters challenges what she calls "the teleology of ed tech"--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.
Teaching Machines
Author: Audrey Watters
Publisher: MIT Press
ISBN: 026254606X
Category : Education
Languages : en
Pages : 325
Book Description
How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to "go at their own pace" did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the "pre-verbal" machine that taught spelling. (Alternate names proposed by Skinner include "Autodidak," "Instructomat," and "Autostructor.") Telling these somewhat cautionary tales, Watters challenges what she calls "the teleology of ed tech"--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.
Publisher: MIT Press
ISBN: 026254606X
Category : Education
Languages : en
Pages : 325
Book Description
How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to "go at their own pace" did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the "pre-verbal" machine that taught spelling. (Alternate names proposed by Skinner include "Autodidak," "Instructomat," and "Autostructor.") Telling these somewhat cautionary tales, Watters challenges what she calls "the teleology of ed tech"--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.
Teaching Machines and Programming
Author: Kenneth Austwick
Publisher:
ISBN:
Category : Computer-assisted instruction
Languages : en
Pages : 228
Book Description
Publisher:
ISBN:
Category : Computer-assisted instruction
Languages : en
Pages : 228
Book Description
Teaching Machines and Programming
Author: K. Austwick
Publisher: Elsevier
ISBN: 148322595X
Category : Computers
Languages : en
Pages : 214
Book Description
Teaching Machines and Programming covers the significant developments in teaching machines and automated teaching, as well as the major theoretical issues and attributes involved in these procedures. After a brief introduction to teaching machine procedures, this six-chapter text goes on summarizing the industrial and military applications of teaching machines. The succeeding chapters consider the underlying theory, function, and schema of the adaptive teaching system, which are related to recognizable teaching functions performed by a human tutor. The last chapters discuss the development and features of linear programs and their application as new teaching aid. These chapters also look into some practical problems arising in programming for schools. This book will prove useful to computer programmers, school administrators, teachers, and students.
Publisher: Elsevier
ISBN: 148322595X
Category : Computers
Languages : en
Pages : 214
Book Description
Teaching Machines and Programming covers the significant developments in teaching machines and automated teaching, as well as the major theoretical issues and attributes involved in these procedures. After a brief introduction to teaching machine procedures, this six-chapter text goes on summarizing the industrial and military applications of teaching machines. The succeeding chapters consider the underlying theory, function, and schema of the adaptive teaching system, which are related to recognizable teaching functions performed by a human tutor. The last chapters discuss the development and features of linear programs and their application as new teaching aid. These chapters also look into some practical problems arising in programming for schools. This book will prove useful to computer programmers, school administrators, teachers, and students.
Teaching Machines
Author: Bill Ferster
Publisher: JHU Press
ISBN: 1421415402
Category : Business & Economics
Languages : en
Pages : 216
Book Description
Technology promises to make learning better, cheaper, faster—but rarely has it kept that promise. The allure of educational technology is easy to understand. Classroom instruction is an expensive and time-consuming process fraught with contradictory theories and frustratingly uneven results. Educators, inspired by machines’ contributions to modern life, have been using technology to facilitate teaching for centuries. In Teaching Machines, Bill Ferster examines past attempts to automate instruction from the earliest use of the postal service for distance education to the current maelstrom surrounding Massive Open Online Courses. He tells the stories of the entrepreneurs and visionaries who, beginning in the colonial era, developed and promoted various instructional technologies. Ferster touches on a wide range of attempts to enhance the classroom experience with machines, from hornbooks, the Chautauqua movement, and correspondence courses to B. F. Skinner’s teaching machine, intelligent tutoring systems, and eLearning. The famed progressive teachers, researchers, and administrators that the book highlights often overcame substantial hurdles to implement their ideas, but not all of them succeeded in improving the quality of education. Teaching Machines provides invaluable new insight into our current debate over the efficacy of educational technology.
Publisher: JHU Press
ISBN: 1421415402
Category : Business & Economics
Languages : en
Pages : 216
Book Description
Technology promises to make learning better, cheaper, faster—but rarely has it kept that promise. The allure of educational technology is easy to understand. Classroom instruction is an expensive and time-consuming process fraught with contradictory theories and frustratingly uneven results. Educators, inspired by machines’ contributions to modern life, have been using technology to facilitate teaching for centuries. In Teaching Machines, Bill Ferster examines past attempts to automate instruction from the earliest use of the postal service for distance education to the current maelstrom surrounding Massive Open Online Courses. He tells the stories of the entrepreneurs and visionaries who, beginning in the colonial era, developed and promoted various instructional technologies. Ferster touches on a wide range of attempts to enhance the classroom experience with machines, from hornbooks, the Chautauqua movement, and correspondence courses to B. F. Skinner’s teaching machine, intelligent tutoring systems, and eLearning. The famed progressive teachers, researchers, and administrators that the book highlights often overcame substantial hurdles to implement their ideas, but not all of them succeeded in improving the quality of education. Teaching Machines provides invaluable new insight into our current debate over the efficacy of educational technology.
Teaching Machines and Programed Learning
Author: James D. Finn
Publisher:
ISBN:
Category : Programmed instruction
Languages : en
Pages : 100
Book Description
Publisher:
ISBN:
Category : Programmed instruction
Languages : en
Pages : 100
Book Description
Machine Learning for Kids
Author: Dale Lane
Publisher: No Starch Press
ISBN: 1718500572
Category : Computers
Languages : en
Pages : 290
Book Description
A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+
Publisher: No Starch Press
ISBN: 1718500572
Category : Computers
Languages : en
Pages : 290
Book Description
A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+
Teaching Machines and Programed Learning, 1962
Author: James D. Finn
Publisher:
ISBN:
Category : Programmed instruction
Languages : en
Pages : 104
Book Description
Publisher:
ISBN:
Category : Programmed instruction
Languages : en
Pages : 104
Book Description
Julia for Machine Learning
Author: Zacharias Voulgaris
Publisher:
ISBN: 9781634628136
Category : Computers
Languages : en
Pages : 298
Book Description
Unleash the power of Julia for your machine learning tasks. We reveal why Julia is chosen for more and more data science and machine learning projects, including Julia's ability to run algorithms at lightning speed. Next, we show you how to set up Julia and various IDEs such as Jupyter. Afterward, we explore key Julia libraries, which are useful for data science work, including packages related to visuals, data structures, and mathematical processes. After building a foundation in Julia, we dive into machine learning, with foundational concepts reinforced by Julia use cases. The use cases build upon each other, reaching the level where we code a machine learning model from scratch using Julia. All of these use cases are available in a series of Jupyter notebooks. After covering dimensionality reduction methods, we explore additional machine learning topics, such as parallelization and data engineering. Although knowing how to use Julia is essential, it is even more important to communicate our results to the business, which we cover next, including how to work efficiently with project stakeholders. Our Julia journey then ascends to the finer points, including improving machine learning transparency, reconciling machine learning with statistics, and continuing to innovate with Julia. The final chapters cover future trends in the areas of Julia, machine learning, and artificial intelligence. We explain machine learning and Bayesian Statistics hybrid systems, and Julia's Gen language. We share many resources so you can continue to sharpen your Julia and machine learning skills. Each chapter concludes with a series of questions designed to reinforce that chapter's material, with answers provided in an appendix. Other appendices include an extensive glossary, bridge packages between Julia and other programming languages, and an overview of three data science-related heuristics implemented in Julia, which aren't in any of the existing packages.
Publisher:
ISBN: 9781634628136
Category : Computers
Languages : en
Pages : 298
Book Description
Unleash the power of Julia for your machine learning tasks. We reveal why Julia is chosen for more and more data science and machine learning projects, including Julia's ability to run algorithms at lightning speed. Next, we show you how to set up Julia and various IDEs such as Jupyter. Afterward, we explore key Julia libraries, which are useful for data science work, including packages related to visuals, data structures, and mathematical processes. After building a foundation in Julia, we dive into machine learning, with foundational concepts reinforced by Julia use cases. The use cases build upon each other, reaching the level where we code a machine learning model from scratch using Julia. All of these use cases are available in a series of Jupyter notebooks. After covering dimensionality reduction methods, we explore additional machine learning topics, such as parallelization and data engineering. Although knowing how to use Julia is essential, it is even more important to communicate our results to the business, which we cover next, including how to work efficiently with project stakeholders. Our Julia journey then ascends to the finer points, including improving machine learning transparency, reconciling machine learning with statistics, and continuing to innovate with Julia. The final chapters cover future trends in the areas of Julia, machine learning, and artificial intelligence. We explain machine learning and Bayesian Statistics hybrid systems, and Julia's Gen language. We share many resources so you can continue to sharpen your Julia and machine learning skills. Each chapter concludes with a series of questions designed to reinforce that chapter's material, with answers provided in an appendix. Other appendices include an extensive glossary, bridge packages between Julia and other programming languages, and an overview of three data science-related heuristics implemented in Julia, which aren't in any of the existing packages.
Deep Learning for Coders with fastai and PyTorch
Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624
Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624
Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Programmed Learning in Perspective
Author: I. K. Davies
Publisher: Transaction Publishers
ISBN: 0202368270
Category : Language Arts & Disciplines
Languages : en
Pages : 222
Book Description
The method of programming outlined in this book represents a major contribution to the growing body of literature in programmed learning. It is the first book in the field to present a carefully designed, complete and integrated system for analyzing, organizing and structuring learning materials in programmed form. Application of the system is illustrated through the step-by-step construction of two short programs. Starting with the analysis of the syllabus and course content, the authors take the reader through each phase of the programming process gathering and organizing the content material, construction of the program matrix and flow diagram and finally, the writing of frames. Every teacher and trainer can benefit from the application of this method to lesson plan preparation and to classroom teaching techniques. Such a method is essential, for all those who are writing programmed materials. In a new computer age classroom environment, programmed learning can be especially beneficial. C. A. Thomas, I. K. Davies, D. Openshaw, and J. B. Bird are instructors or directors at the British Royal Air Force School of Education. They are pioneers in the application of programmed learning in Britain and are highly regarded as forward looking and creative educational research workers. Their accomplishments include, in addition to this ingenious book, the design and development of the Empirical Tutor, one of Britain's major teaching machines, and the publication of a number of technical papers in the field of programmed learning. Lawrence M. Stolurow is professor emeritus of psychological & quantitative foundations at the University of Iowa.
Publisher: Transaction Publishers
ISBN: 0202368270
Category : Language Arts & Disciplines
Languages : en
Pages : 222
Book Description
The method of programming outlined in this book represents a major contribution to the growing body of literature in programmed learning. It is the first book in the field to present a carefully designed, complete and integrated system for analyzing, organizing and structuring learning materials in programmed form. Application of the system is illustrated through the step-by-step construction of two short programs. Starting with the analysis of the syllabus and course content, the authors take the reader through each phase of the programming process gathering and organizing the content material, construction of the program matrix and flow diagram and finally, the writing of frames. Every teacher and trainer can benefit from the application of this method to lesson plan preparation and to classroom teaching techniques. Such a method is essential, for all those who are writing programmed materials. In a new computer age classroom environment, programmed learning can be especially beneficial. C. A. Thomas, I. K. Davies, D. Openshaw, and J. B. Bird are instructors or directors at the British Royal Air Force School of Education. They are pioneers in the application of programmed learning in Britain and are highly regarded as forward looking and creative educational research workers. Their accomplishments include, in addition to this ingenious book, the design and development of the Empirical Tutor, one of Britain's major teaching machines, and the publication of a number of technical papers in the field of programmed learning. Lawrence M. Stolurow is professor emeritus of psychological & quantitative foundations at the University of Iowa.