Teaching Machines

Teaching Machines PDF Author: Audrey Watters
Publisher: MIT Press
ISBN: 026254606X
Category : Education
Languages : en
Pages : 325

Get Book Here

Book Description
How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to "go at their own pace" did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the "pre-verbal" machine that taught spelling. (Alternate names proposed by Skinner include "Autodidak," "Instructomat," and "Autostructor.") Telling these somewhat cautionary tales, Watters challenges what she calls "the teleology of ed tech"--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.

Teaching Machines

Teaching Machines PDF Author: Audrey Watters
Publisher: MIT Press
ISBN: 026254606X
Category : Education
Languages : en
Pages : 325

Get Book Here

Book Description
How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to "go at their own pace" did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the "pre-verbal" machine that taught spelling. (Alternate names proposed by Skinner include "Autodidak," "Instructomat," and "Autostructor.") Telling these somewhat cautionary tales, Watters challenges what she calls "the teleology of ed tech"--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.

Teaching Machines and Programming

Teaching Machines and Programming PDF Author: Kenneth Austwick
Publisher:
ISBN:
Category : Computer-assisted instruction
Languages : en
Pages : 228

Get Book Here

Book Description
Teaching Machines and Programming covers the significant developments in teaching machines and automated teaching, as well as the major theoretical issues and attributes involved in these procedures. After a brief introduction to teaching machine procedures, this six-chapter text goes on summarizing the industrial and military applications of teaching machines. The succeeding chapters consider the underlying theory, function, and schema of the adaptive teaching system, which are related to recognizable teaching functions performed by a human tutor. The last chapters discuss the development a.

The Technology of Teaching

The Technology of Teaching PDF Author: B. F. Skinner
Publisher: B. F. Skinner Foundation
ISBN: 099645392X
Category : Education
Languages : en
Pages : 268

Get Book Here

Book Description
On Parent's Day, in 1952, B. F. Skinner visited his daughter's fourth grade math class. As he watched the lesson, he became increasingly uncomfortable. Almost every principle of effective teaching that he had studied for more than 20 years was being violated in that classroom. Yet it was a typical class. The teacher showed how to solve the day's problems, then gave the students a worksheet to do. Some children began to work readily while others shifted uncomfortably in their chairs, or raised their hands for help. The teacher went from desk to desk, giving help and feedback. Skinner knew what was needed. Each student should be given a problem tailored precisely to his or her skill level, not to the class average, and every answer needed to be assessed immediately to determine the next step. The task was clearly impossible for one teacher. That afternoon, Skinner set to work on a teaching machine. Today's computers have made the mechanical machine obsolete, but the principles of how to design instruction in steps that lead from a basic level to competent performance are as valid today as they were in the 20th century. This book brings together Skinner's writings on education during the years he was most involved in improving education.

Teaching Machines and Programmed Instruction

Teaching Machines and Programmed Instruction PDF Author: Edward Bernard Fry
Publisher:
ISBN:
Category : Programmed instruction
Languages : en
Pages : 264

Get Book Here

Book Description


Teaching Machines and Programed Learning

Teaching Machines and Programed Learning PDF Author: James D. Finn
Publisher:
ISBN:
Category : Programmed instruction
Languages : en
Pages : 100

Get Book Here

Book Description


Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch PDF Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624

Get Book Here

Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

How Learning Works

How Learning Works PDF Author: Susan A. Ambrose
Publisher: John Wiley & Sons
ISBN: 0470617608
Category : Education
Languages : en
Pages : 336

Get Book Here

Book Description
Praise for How Learning Works "How Learning Works is the perfect title for this excellent book. Drawing upon new research in psychology, education, and cognitive science, the authors have demystified a complex topic into clear explanations of seven powerful learning principles. Full of great ideas and practical suggestions, all based on solid research evidence, this book is essential reading for instructors at all levels who wish to improve their students' learning." —Barbara Gross Davis, assistant vice chancellor for educational development, University of California, Berkeley, and author, Tools for Teaching "This book is a must-read for every instructor, new or experienced. Although I have been teaching for almost thirty years, as I read this book I found myself resonating with many of its ideas, and I discovered new ways of thinking about teaching." —Eugenia T. Paulus, professor of chemistry, North Hennepin Community College, and 2008 U.S. Community Colleges Professor of the Year from The Carnegie Foundation for the Advancement of Teaching and the Council for Advancement and Support of Education "Thank you Carnegie Mellon for making accessible what has previously been inaccessible to those of us who are not learning scientists. Your focus on the essence of learning combined with concrete examples of the daily challenges of teaching and clear tactical strategies for faculty to consider is a welcome work. I will recommend this book to all my colleagues." —Catherine M. Casserly, senior partner, The Carnegie Foundation for the Advancement of Teaching "As you read about each of the seven basic learning principles in this book, you will find advice that is grounded in learning theory, based on research evidence, relevant to college teaching, and easy to understand. The authors have extensive knowledge and experience in applying the science of learning to college teaching, and they graciously share it with you in this organized and readable book." —From the Foreword by Richard E. Mayer, professor of psychology, University of California, Santa Barbara; coauthor, e-Learning and the Science of Instruction; and author, Multimedia Learning

Learning How to Learn

Learning How to Learn PDF Author: Barbara Oakley, PhD
Publisher: Penguin
ISBN: 052550446X
Category : Juvenile Nonfiction
Languages : en
Pages : 258

Get Book Here

Book Description
A surprisingly simple way for students to master any subject--based on one of the world's most popular online courses and the bestselling book A Mind for Numbers A Mind for Numbers and its wildly popular online companion course "Learning How to Learn" have empowered more than two million learners of all ages from around the world to master subjects that they once struggled with. Fans often wish they'd discovered these learning strategies earlier and ask how they can help their kids master these skills as well. Now in this new book for kids and teens, the authors reveal how to make the most of time spent studying. We all have the tools to learn what might not seem to come naturally to us at first--the secret is to understand how the brain works so we can unlock its power. This book explains: Why sometimes letting your mind wander is an important part of the learning process How to avoid "rut think" in order to think outside the box Why having a poor memory can be a good thing The value of metaphors in developing understanding A simple, yet powerful, way to stop procrastinating Filled with illustrations, application questions, and exercises, this book makes learning easy and fun.

The Evolution of American Educational Technology

The Evolution of American Educational Technology PDF Author: Paul Saettler
Publisher: IAP
ISBN: 1607529785
Category : Education
Languages : en
Pages : 599

Get Book Here

Book Description
The primary purpose of this book is to trace the theoretical methodological foundations of American educational technology. It must be emphasized that this work is essentially as history of the process of educational technology rather than of products in the form of devices or media. Although media have played an important rode in educational technology, the reader should not lose sight of the central process which characterizes and underlies the true historical meaning and function of educational technology. Moreover, the assumption is made that all current theory, methodology, and practice rests upon the heritage of the past. Indeed, a common problem in the field has been the failure, in many instances, to take adequate account of past history in planning for the present or the future. A related purpose of this book is to provide a selective survey of research in educational technology as it relates to the American public schools. Such research reviews are not intended to be comprehensive, but were included because of their historical importance and their relevance in understanding the process of educational technology.

Mathematics and Programming for Machine Learning with R

Mathematics and Programming for Machine Learning with R PDF Author: William Claster
Publisher: CRC Press
ISBN: 1000196976
Category : Computers
Languages : en
Pages : 431

Get Book Here

Book Description
Based on the author’s experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms