Taxicab Geometry

Taxicab Geometry PDF Author: Eugene F. Krause
Publisher: Courier Corporation
ISBN: 048613606X
Category : Mathematics
Languages : en
Pages : 99

Get Book Here

Book Description
Fascinating, accessible introduction to unusual mathematical system in which distance is not measured by straight lines. Illustrated topics include applications to urban geography and comparisons to Euclidean geometry. Selected answers to problems.

Taxicab Geometry

Taxicab Geometry PDF Author: Eugene F. Krause
Publisher: Courier Corporation
ISBN: 048613606X
Category : Mathematics
Languages : en
Pages : 99

Get Book Here

Book Description
Fascinating, accessible introduction to unusual mathematical system in which distance is not measured by straight lines. Illustrated topics include applications to urban geography and comparisons to Euclidean geometry. Selected answers to problems.

Taxicab Geometry

Taxicab Geometry PDF Author: Eugene F. Krause
Publisher: Courier Corporation
ISBN: 9780486252025
Category : Mathematics
Languages : en
Pages : 100

Get Book Here

Book Description
Develops a simple non-Euclidean geometry and explores some of its practical applications through graphs, research problems, and exercises. Includes selected answers.

Geometry: The Line and the Circle

Geometry: The Line and the Circle PDF Author: Maureen T. Carroll
Publisher: American Mathematical Soc.
ISBN: 1470448432
Category : Mathematics
Languages : en
Pages : 502

Get Book Here

Book Description
Geometry: The Line and the Circle is an undergraduate text with a strong narrative that is written at the appropriate level of rigor for an upper-level survey or axiomatic course in geometry. Starting with Euclid's Elements, the book connects topics in Euclidean and non-Euclidean geometry in an intentional and meaningful way, with historical context. The line and the circle are the principal characters driving the narrative. In every geometry considered—which include spherical, hyperbolic, and taxicab, as well as finite affine and projective geometries—these two objects are analyzed and highlighted. Along the way, the reader contemplates fundamental questions such as: What is a straight line? What does parallel mean? What is distance? What is area? There is a strong focus on axiomatic structures throughout the text. While Euclid is a constant inspiration and the Elements is repeatedly revisited with substantial coverage of Books I, II, III, IV, and VI, non-Euclidean geometries are introduced very early to give the reader perspective on questions of axiomatics. Rounding out the thorough coverage of axiomatics are concluding chapters on transformations and constructibility. The book is compulsively readable with great attention paid to the historical narrative and hundreds of attractive problems.

Taxicab Geometry

Taxicab Geometry PDF Author: Eugene F. Krause
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 100

Get Book Here

Book Description
Develops a simple non-Euclidean geometry and explores some of its practical applications through graphs, research problems, and exercises. Includes selected answers.

Convex Optimization & Euclidean Distance Geometry

Convex Optimization & Euclidean Distance Geometry PDF Author: Jon Dattorro
Publisher: Meboo Publishing USA
ISBN: 0976401304
Category : Mathematics
Languages : en
Pages : 776

Get Book Here

Book Description
The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.

The Foundations of Geometry and the Non-Euclidean Plane

The Foundations of Geometry and the Non-Euclidean Plane PDF Author: G.E. Martin
Publisher: Springer Science & Business Media
ISBN: 1461257255
Category : Mathematics
Languages : en
Pages : 525

Get Book Here

Book Description
This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.

The Last Recreations

The Last Recreations PDF Author: Martin Gardner
Publisher: Springer Science & Business Media
ISBN: 0387258272
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
Of all of Martin Gardners writings, none gained him a wider audience or was more central to his reputation than his Mathematical Recreations column in Scientific American - which virtually defined the genre of popular mathematics writing for a generation. Flatland, Hydras and Eggs: Mathematical Mystifications is the final collection of these columns, covering the period roughly from 1979 to Gardners retirement in 1986. As always in his published collections, Gardner includes letters commenting on the ideas presented in his articles. These columns show him at the top of his form and should not be missed by anyone with an interest in mathematics.

Geometry

Geometry PDF Author: Richard S. Millman
Publisher: Springer Science & Business Media
ISBN: 9780387974125
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
Geometry: A Metric Approach with Models, imparts a real feeling for Euclidean and non-Euclidean (in particular, hyperbolic) geometry. Intended as a rigorous first course, the book introduces and develops the various axioms slowly, and then, in a departure from other texts, continually illustrates the major definitions and axioms with two or three models, enabling the reader to picture the idea more clearly. The second edition has been expanded to include a selection of expository exercises. Additionally, the authors have designed software with computational problems to accompany the text. This software may be obtained from George Parker.

 PDF Author: Ivan Moscovich
Publisher: Sterling Publishing Company, Inc.
ISBN: 9781402716683
Category :
Languages : en
Pages : 136

Get Book Here

Book Description
Presents a collection of puzzles that focus on mathematical concepts.

Introduction to Geometric Probability

Introduction to Geometric Probability PDF Author: Daniel A. Klain
Publisher: Cambridge University Press
ISBN: 9780521596541
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.