Systems-Level Modelling of Microbial Communities

Systems-Level Modelling of Microbial Communities PDF Author: Aarthi Ravikrishnan
Publisher: CRC Press
ISBN: 0429946066
Category : Mathematics
Languages : en
Pages : 88

Get Book Here

Book Description
Systems-Level Modelling of Microbial Communities: Theory and Practice introduces various aspects of modelling microbial communities and presents a detailed overview of the computational methods which have been developed in this area. This book is aimed at researchers in the field of computational/systems biology as well as biologists/experimentalists studying microbial communities, who are keen on embracing the concepts of computational modelling. The primary focus of this book is on methods for modelling interactions between micro-organisms in a community, with special emphasis on constraint-based and network-based modelling techniques. A brief overview of population- and agent-based modelling is also presented. Lastly, it covers the experimental methods to understand microbial communities, and provides an outlook on how the field may evolve in the coming years.

Systems-Level Modelling of Microbial Communities

Systems-Level Modelling of Microbial Communities PDF Author: Aarthi Ravikrishnan
Publisher: CRC Press
ISBN: 0429946066
Category : Mathematics
Languages : en
Pages : 88

Get Book Here

Book Description
Systems-Level Modelling of Microbial Communities: Theory and Practice introduces various aspects of modelling microbial communities and presents a detailed overview of the computational methods which have been developed in this area. This book is aimed at researchers in the field of computational/systems biology as well as biologists/experimentalists studying microbial communities, who are keen on embracing the concepts of computational modelling. The primary focus of this book is on methods for modelling interactions between micro-organisms in a community, with special emphasis on constraint-based and network-based modelling techniques. A brief overview of population- and agent-based modelling is also presented. Lastly, it covers the experimental methods to understand microbial communities, and provides an outlook on how the field may evolve in the coming years.

An Introduction to Computational Systems Biology

An Introduction to Computational Systems Biology PDF Author: Karthik Raman
Publisher: CRC Press
ISBN: 0429944527
Category : Computers
Languages : en
Pages : 359

Get Book Here

Book Description
This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.

Systems biology and ecology of microbial mat communities

Systems biology and ecology of microbial mat communities PDF Author: Martin G. Klotz
Publisher: Frontiers Media SA
ISBN: 288919793X
Category : Microbiology
Languages : en
Pages : 264

Get Book Here

Book Description
Microbial mat communities consist of dense populations of microorganisms embedded in exopolymers and/or biomineralized solid phases, and are often found in mm-cm thick assemblages, which can be stratified due to environmental gradients such as light, oxygen or sulfide. Microbial mat communities are commonly observed under extreme environmental conditions, deriving energy primarily from light and/or reduced chemicals to drive autotrophic fixation of carbon dioxide. Microbial mat ecosystems are regarded as living analogues of primordial systems on Earth, and they often form perennial structures with conspicuous stratifications of microbial populations that can be studied in situ under stable conditions for many years. Consequently, microbial mat communities are ideal natural laboratories and represent excellent model systems for studying microbial community structure and function, microbial dynamics and interactions, and discovery of new microorganisms with novel metabolic pathways potentially useful in future industrial and/or medical applications. Due to their relative simplicity and organization, microbial mat communities are often excellent testing grounds for new technologies in microbiology including micro-sensor analysis, stable isotope methodology and modern genomics. Integrative studies of microbial mat communities that combine modern biogeochemical and molecular biological methods with traditional microbiology, macro-ecological approaches, and community network modeling will provide new and detailed insights regarding the systems biology of microbial mats and the complex interplay among individual populations and their physicochemical environment. These processes ultimately control the biogeochemical cycling of energy and/or nutrients in microbial systems. Similarities in microbial community function across different types of communities from highly disparate environments may provide a deeper basis for understanding microbial community dynamics and the ecological role of specific microbial populations. Approaches and concepts developed in highly-constrained, relatively stable natural communities may also provide insights useful for studying and understanding more complex microbial communities.

Systems Biology of Microbial Communities

Systems Biology of Microbial Communities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 38

Get Book Here

Book Description
Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

Practical Guide to ChIP-seq Data Analysis

Practical Guide to ChIP-seq Data Analysis PDF Author: Borbala Mifsud
Publisher: CRC Press
ISBN: 0429946392
Category : Computers
Languages : en
Pages : 114

Get Book Here

Book Description
Chromatin immunoprecipitation sequencing (ChIP-seq), which maps the genome-wide localization patterns of transcription factors and epigenetic marks, is among the most widely used methods in molecular biology. Practical Guide to ChIP-seq Data Analysis will guide readers through the steps of ChIP-seq analysis: from quality control, through peak calling, to downstream analyses. It will help experimental biologists to design their ChIP-seq experiments with the analysis in mind, and to perform the basic analysis steps themselves. It also aims to support bioinformaticians to understand how the data is generated, what the sources of biases are, and which methods are appropriate for different analyses.

Microbial Systems Biology

Microbial Systems Biology PDF Author: Ali Navid
Publisher: Humana Press
ISBN: 9781617798269
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Systems biology is the study of interactions between assorted components of biological systems with the aim of acquiring new insights into how organisms function and respond to different stimuli. Although more and more efforts are being directed toward examining systems biology in complex multi-cellular organisms, the bulk of system-level analyses conducted to date have focused on the biology of microbes. In, Microbial Systems Biology: Methods and Protocols expert researchers in the field describe the utility and attributes of different tools (both experimental and computational) that are used for studying microbial systems. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microbial Systems Biology: Methods and Protocols introduces and aids scientists in using the various tools that are currently available for analysis, modification and utilization of microbial organisms.

The Social Biology of Microbial Communities

The Social Biology of Microbial Communities PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309264324
Category : Medical
Languages : en
Pages : 633

Get Book Here

Book Description
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.

Microbial Community Modeling: Prediction of Microbial Interactions and Community Dynamics

Microbial Community Modeling: Prediction of Microbial Interactions and Community Dynamics PDF Author: Hyun-Seob Song
Publisher: MDPI
ISBN: 3038429759
Category : Science
Languages : en
Pages : 295

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Microbial Community Modeling: Prediction of Microbial Interactions and Community Dynamics" that was published in Processes

Systems Biology

Systems Biology PDF Author: Bernhard Palsson
Publisher: Cambridge University Press
ISBN: 1107038855
Category : Medical
Languages : en
Pages : 551

Get Book Here

Book Description
The first comprehensive single-authored textbook on genome-scale models and the bottom-up approach to systems biology.

Systems Biology and Ecology of Microbial Mat Communities

Systems Biology and Ecology of Microbial Mat Communities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Microbial mat communities consist of dense populations of microorganisms embedded in exopolymers and/or biomineralized solid phases, and are often found in mm-cm thick assemblages, which can be stratified due to environmental gradients such as light, oxygen or sulfide. Microbial mat communities are commonly observed under extreme environmental conditions, deriving energy primarily from light and/or reduced chemicals to drive autotrophic fixation of carbon dioxide. Microbial mat ecosystems are regarded as living analogues of primordial systems on Earth, and they often form perennial structures with conspicuous stratifications of microbial populations that can be studied in situ under stable conditions for many years. Consequently, microbial mat communities are ideal natural laboratories and represent excellent model systems for studying microbial community structure and function, microbial dynamics and interactions, and discovery of new microorganisms with novel metabolic pathways potentially useful in future industrial and/or medical applications. Due to their relative simplicity and organization, microbial mat communities are often excellent testing grounds for new technologies in microbiology including micro-sensor analysis, stable isotope methodology and modern genomics. Integrative studies of microbial mat communities that combine modern biogeochemical and molecular biological methods with traditional microbiology, macro-ecological approaches, and community network modeling will provide new and detailed insights regarding the systems biology of microbial mats and the complex interplay among individual populations and their physicochemical environment. These processes ultimately control the biogeochemical cycling of energy and/or nutrients in microbial systems. Similarities in microbial community function across different types of communities from highly disparate environments may provide a deeper basis for understanding microbial community dynamics and the ecological role of specific microbial populations. Approaches and concepts developed in highly-constrained, relatively stable natural communities may also provide insights useful for studying and understanding more complex microbial communities.