Author: George Bandlamudi
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832529624
Category : Science
Languages : en
Pages : 192
Book Description
High temperature PEMFCs (HT PEMFCs), operating at 120 C - 200 C are rather new and offer tremendous advantages. For instance fuel cells operating at > 100 C reduce issues related to water management substantially. Circulating excess heat energy from such fuel cells into other system processes where heat is needed would be much more practical (due to higher DeltaT) compared to the standard LT PEMFCs where the produced heat has less than 90 C (lower DeltaT). Higher tolerance to fuel impurities such as CO, by these HT PEMFCs has made them very practical for many applications. Although PBI/H3PO4 based membranes have been explored for use in PEMFCs from the early 1990s, only recently PEMEAS (currently BASF) has marketed them as commercially available MEAs. Besides, some companies such as Sartorius (currently Elcomax) and Fuma Tech of Germany, Danish Power Systems of Denmark are offering HT-MEAs on a commercial basis. Although some issues remain, such as development of durable and low cost catalyst and catalyst support materials, acid management, the rapid development of membranes and MEAs has been motivated by a huge demand from many a market. Recently, DLR in Germany has tested its pilot airplane (Antares) fully operated with a HT PEMFC stack (with on-board water bottle). ClearEdge Power in Portland, USA has been developing systems based on HT PEMFC technology to be deployed in the US as well as in South Korean households. Many more companies are increasingly interested in this technology due to the many fold advantages it has to offer. This work is aimed at elucidating this HT PEMFC technology, in terms of giving an in-depth view of what it means to operate a HT PEMFC.
Systematic Characterization of Ht Pemfcs Containing Pbi/H_3po_4systems
Author: George Bandlamudi
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832529624
Category : Science
Languages : en
Pages : 192
Book Description
High temperature PEMFCs (HT PEMFCs), operating at 120 C - 200 C are rather new and offer tremendous advantages. For instance fuel cells operating at > 100 C reduce issues related to water management substantially. Circulating excess heat energy from such fuel cells into other system processes where heat is needed would be much more practical (due to higher DeltaT) compared to the standard LT PEMFCs where the produced heat has less than 90 C (lower DeltaT). Higher tolerance to fuel impurities such as CO, by these HT PEMFCs has made them very practical for many applications. Although PBI/H3PO4 based membranes have been explored for use in PEMFCs from the early 1990s, only recently PEMEAS (currently BASF) has marketed them as commercially available MEAs. Besides, some companies such as Sartorius (currently Elcomax) and Fuma Tech of Germany, Danish Power Systems of Denmark are offering HT-MEAs on a commercial basis. Although some issues remain, such as development of durable and low cost catalyst and catalyst support materials, acid management, the rapid development of membranes and MEAs has been motivated by a huge demand from many a market. Recently, DLR in Germany has tested its pilot airplane (Antares) fully operated with a HT PEMFC stack (with on-board water bottle). ClearEdge Power in Portland, USA has been developing systems based on HT PEMFC technology to be deployed in the US as well as in South Korean households. Many more companies are increasingly interested in this technology due to the many fold advantages it has to offer. This work is aimed at elucidating this HT PEMFC technology, in terms of giving an in-depth view of what it means to operate a HT PEMFC.
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832529624
Category : Science
Languages : en
Pages : 192
Book Description
High temperature PEMFCs (HT PEMFCs), operating at 120 C - 200 C are rather new and offer tremendous advantages. For instance fuel cells operating at > 100 C reduce issues related to water management substantially. Circulating excess heat energy from such fuel cells into other system processes where heat is needed would be much more practical (due to higher DeltaT) compared to the standard LT PEMFCs where the produced heat has less than 90 C (lower DeltaT). Higher tolerance to fuel impurities such as CO, by these HT PEMFCs has made them very practical for many applications. Although PBI/H3PO4 based membranes have been explored for use in PEMFCs from the early 1990s, only recently PEMEAS (currently BASF) has marketed them as commercially available MEAs. Besides, some companies such as Sartorius (currently Elcomax) and Fuma Tech of Germany, Danish Power Systems of Denmark are offering HT-MEAs on a commercial basis. Although some issues remain, such as development of durable and low cost catalyst and catalyst support materials, acid management, the rapid development of membranes and MEAs has been motivated by a huge demand from many a market. Recently, DLR in Germany has tested its pilot airplane (Antares) fully operated with a HT PEMFC stack (with on-board water bottle). ClearEdge Power in Portland, USA has been developing systems based on HT PEMFC technology to be deployed in the US as well as in South Korean households. Many more companies are increasingly interested in this technology due to the many fold advantages it has to offer. This work is aimed at elucidating this HT PEMFC technology, in terms of giving an in-depth view of what it means to operate a HT PEMFC.