Author: Qi He
Publisher: Springer Science & Business Media
ISBN: 1461462924
Category : Science
Languages : en
Pages : 100
Book Description
This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular. By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources, which may represent data sizes in computer usage, computational complexity in algorithms, sample sizes in statistical analysis and channel bandwidths in communications.
System Identification Using Regular and Quantized Observations
Author: Qi He
Publisher: Springer Science & Business Media
ISBN: 1461462924
Category : Science
Languages : en
Pages : 100
Book Description
This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular. By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources, which may represent data sizes in computer usage, computational complexity in algorithms, sample sizes in statistical analysis and channel bandwidths in communications.
Publisher: Springer Science & Business Media
ISBN: 1461462924
Category : Science
Languages : en
Pages : 100
Book Description
This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular. By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources, which may represent data sizes in computer usage, computational complexity in algorithms, sample sizes in statistical analysis and channel bandwidths in communications.
System Identification with Quantized Observations
Author: Le Yi Wang
Publisher: Springer Science & Business Media
ISBN: 0817649565
Category : Science
Languages : en
Pages : 317
Book Description
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. System Identification with Quantized Observations is an excellent resource for graduate students, systems theorists, control engineers, applied mathematicians, as well as practitioners who use identification algorithms in their work.
Publisher: Springer Science & Business Media
ISBN: 0817649565
Category : Science
Languages : en
Pages : 317
Book Description
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. System Identification with Quantized Observations is an excellent resource for graduate students, systems theorists, control engineers, applied mathematicians, as well as practitioners who use identification algorithms in their work.
Errors-in-Variables Methods in System Identification
Author: Torsten Söderström
Publisher: Springer
ISBN: 3319750011
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, including the characterization of noise properties, extension to multivariable systems, and continuous-time models. The book finds solutions that are constituted of methods that are compatible with a set of noisy data, which traditional approaches to solutions, such as (total) least squares, do not find. A number of identification methods for the EIV problem are presented. Each method is accompanied with a detailed analysis based on statistical theory, and the relationship between the different methods is explained. A multitude of methods are covered, including: instrumental variables methods; methods based on bias-compensation; covariance matching methods; and prediction error and maximum-likelihood methods. The book shows how many of the methods can be applied in either the time or the frequency domain and provides special methods adapted to the case of periodic excitation. It concludes with a chapter specifically devoted to practical aspects and user perspectives that will facilitate the transfer of the theoretical material to application in real systems. Errors-in-Variables Methods in System Identification gives readers the possibility of recovering true system dynamics from noisy measurements, while solving over-determined systems of equations, making it suitable for statisticians and mathematicians alike. The book also acts as a reference for researchers and computer engineers because of its detailed exploration of EIV problems.
Publisher: Springer
ISBN: 3319750011
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, including the characterization of noise properties, extension to multivariable systems, and continuous-time models. The book finds solutions that are constituted of methods that are compatible with a set of noisy data, which traditional approaches to solutions, such as (total) least squares, do not find. A number of identification methods for the EIV problem are presented. Each method is accompanied with a detailed analysis based on statistical theory, and the relationship between the different methods is explained. A multitude of methods are covered, including: instrumental variables methods; methods based on bias-compensation; covariance matching methods; and prediction error and maximum-likelihood methods. The book shows how many of the methods can be applied in either the time or the frequency domain and provides special methods adapted to the case of periodic excitation. It concludes with a chapter specifically devoted to practical aspects and user perspectives that will facilitate the transfer of the theoretical material to application in real systems. Errors-in-Variables Methods in System Identification gives readers the possibility of recovering true system dynamics from noisy measurements, while solving over-determined systems of equations, making it suitable for statisticians and mathematicians alike. The book also acts as a reference for researchers and computer engineers because of its detailed exploration of EIV problems.
Advances in Systems Science
Author: Jerzy Swiątek
Publisher: Springer Science & Business Media
ISBN: 3319018574
Category : Technology & Engineering
Languages : en
Pages : 796
Book Description
The International Conference on Systems Science 2013 (ICSS 2013) was the 18th event of the series of international scientific conferences for researchers and practitioners in the fields of systems science and systems engineering. The conference took place in Wroclaw, Poland during September 10-12, 2013 and was organized by Wroclaw University of Technology and co-organized by: Committee of Automatics and Robotics of Polish Academy of Sciences, Committee of Computer Science of Polish Academy of Sciences and Polish Section of IEEE. The papers included in the proceedings cover the following topics: Control Theory, Databases and Data Mining, Image and Signal Processing, Machine Learning, Modeling and Simulation, Operational Research, Service Science, Time series and System Identification. The accepted and presented papers highlight new trends and challenges in systems science and systems engineering.
Publisher: Springer Science & Business Media
ISBN: 3319018574
Category : Technology & Engineering
Languages : en
Pages : 796
Book Description
The International Conference on Systems Science 2013 (ICSS 2013) was the 18th event of the series of international scientific conferences for researchers and practitioners in the fields of systems science and systems engineering. The conference took place in Wroclaw, Poland during September 10-12, 2013 and was organized by Wroclaw University of Technology and co-organized by: Committee of Automatics and Robotics of Polish Academy of Sciences, Committee of Computer Science of Polish Academy of Sciences and Polish Section of IEEE. The papers included in the proceedings cover the following topics: Control Theory, Databases and Data Mining, Image and Signal Processing, Machine Learning, Modeling and Simulation, Operational Research, Service Science, Time series and System Identification. The accepted and presented papers highlight new trends and challenges in systems science and systems engineering.
Identification of Dynamic Systems
Author: Rolf Isermann
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Advances in Neural Networks - ISNN 2017
Author: Fengyu Cong
Publisher: Springer
ISBN: 3319590723
Category : Computers
Languages : en
Pages : 601
Book Description
This book constitutes the refereed proceedings of the 14th International Symposium on Neural Networks, ISNN 2017, held in Sapporo, Hakodate, and Muroran, Hokkaido, Japan, in June 2017. The 135 revised full papers presented in this two-volume set were carefully reviewed and selected from 259 submissions. The papers cover topics like perception, emotion and development, action and motor control, attractor and associative memory, neurodynamics, complex systems, and chaos.
Publisher: Springer
ISBN: 3319590723
Category : Computers
Languages : en
Pages : 601
Book Description
This book constitutes the refereed proceedings of the 14th International Symposium on Neural Networks, ISNN 2017, held in Sapporo, Hakodate, and Muroran, Hokkaido, Japan, in June 2017. The 135 revised full papers presented in this two-volume set were carefully reviewed and selected from 259 submissions. The papers cover topics like perception, emotion and development, action and motor control, attractor and associative memory, neurodynamics, complex systems, and chaos.
Identification of Linear Systems
Author: J. Schoukens
Publisher: Elsevier
ISBN: 0080912567
Category : Science
Languages : en
Pages : 353
Book Description
This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.
Publisher: Elsevier
ISBN: 0080912567
Category : Science
Languages : en
Pages : 353
Book Description
This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.
Recursive Identification and Parameter Estimation
Author: Han-Fu Chen
Publisher: CRC Press
ISBN: 1466568844
Category : Mathematics
Languages : en
Pages : 431
Book Description
Recursive Identification and Parameter Estimation describes a recursive approach to solving system identification and parameter estimation problems arising from diverse areas. Supplying rigorous theoretical analysis, it presents the material and proposed algorithms in a manner that makes it easy to understand—providing readers with the modeling and identification skills required for successful theoretical research and effective application. The book begins by introducing the basic concepts of probability theory, including martingales, martingale difference sequences, Markov chains, mixing processes, and stationary processes. Next, it discusses the root-seeking problem for functions, starting with the classic RM algorithm, but with attention mainly paid to the stochastic approximation algorithms with expanding truncations (SAAWET) which serves as the basic tool for recursively solving the problems addressed in the book. The book not only identifies the results of system identification and parameter estimation, but also demonstrates how to apply the proposed approaches for addressing problems in a range of areas, including: Identification of ARMAX systems without imposing restrictive conditions Identification of typical nonlinear systems Optimal adaptive tracking Consensus of multi-agents systems Principal component analysis Distributed randomized PageRank computation This book recursively identifies autoregressive and moving average with exogenous input (ARMAX) and discusses the identification of non-linear systems. It concludes by addressing the problems arising from different areas that are solved by SAAWET. Demonstrating how to apply the proposed approaches to solve problems across a range of areas, the book is suitable for students, researchers, and engineers working in systems and control, signal processing, communication, and mathematical statistics.
Publisher: CRC Press
ISBN: 1466568844
Category : Mathematics
Languages : en
Pages : 431
Book Description
Recursive Identification and Parameter Estimation describes a recursive approach to solving system identification and parameter estimation problems arising from diverse areas. Supplying rigorous theoretical analysis, it presents the material and proposed algorithms in a manner that makes it easy to understand—providing readers with the modeling and identification skills required for successful theoretical research and effective application. The book begins by introducing the basic concepts of probability theory, including martingales, martingale difference sequences, Markov chains, mixing processes, and stationary processes. Next, it discusses the root-seeking problem for functions, starting with the classic RM algorithm, but with attention mainly paid to the stochastic approximation algorithms with expanding truncations (SAAWET) which serves as the basic tool for recursively solving the problems addressed in the book. The book not only identifies the results of system identification and parameter estimation, but also demonstrates how to apply the proposed approaches for addressing problems in a range of areas, including: Identification of ARMAX systems without imposing restrictive conditions Identification of typical nonlinear systems Optimal adaptive tracking Consensus of multi-agents systems Principal component analysis Distributed randomized PageRank computation This book recursively identifies autoregressive and moving average with exogenous input (ARMAX) and discusses the identification of non-linear systems. It concludes by addressing the problems arising from different areas that are solved by SAAWET. Demonstrating how to apply the proposed approaches to solve problems across a range of areas, the book is suitable for students, researchers, and engineers working in systems and control, signal processing, communication, and mathematical statistics.
Analysis and Design of Networked Control Systems
Author: Keyou You
Publisher: Springer
ISBN: 1447166159
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This monograph focuses on characterizing the stability and performance consequences of inserting limited-capacity communication networks within a control loop. The text shows how integration of the ideas of control and estimation with those of communication and information theory can be used to provide important insights concerning several fundamental problems such as: · minimum data rate for stabilization of linear systems over noisy channels; · minimum network requirement for stabilization of linear systems over fading channels; and · stability of Kalman filtering with intermittent observations. A fundamental link is revealed between the topological entropy of linear dynamical systems and the capacities of communication channels. The design of a logarithmic quantizer for the stabilization of linear systems under various network environments is also extensively discussed and solutions to many problems of Kalman filtering with intermittent observations are demonstrated. Analysis and Design of Networked Control Systems will interest control theorists and engineers working with networked systems and may also be used as a resource for graduate students with backgrounds in applied mathematics, communications or control who are studying such systems.
Publisher: Springer
ISBN: 1447166159
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This monograph focuses on characterizing the stability and performance consequences of inserting limited-capacity communication networks within a control loop. The text shows how integration of the ideas of control and estimation with those of communication and information theory can be used to provide important insights concerning several fundamental problems such as: · minimum data rate for stabilization of linear systems over noisy channels; · minimum network requirement for stabilization of linear systems over fading channels; and · stability of Kalman filtering with intermittent observations. A fundamental link is revealed between the topological entropy of linear dynamical systems and the capacities of communication channels. The design of a logarithmic quantizer for the stabilization of linear systems under various network environments is also extensively discussed and solutions to many problems of Kalman filtering with intermittent observations are demonstrated. Analysis and Design of Networked Control Systems will interest control theorists and engineers working with networked systems and may also be used as a resource for graduate students with backgrounds in applied mathematics, communications or control who are studying such systems.
Stochastic Modeling and Control
Author: Ivan Ivanov
Publisher: BoD – Books on Demand
ISBN: 9535108301
Category : Mathematics
Languages : en
Pages : 288
Book Description
Stochastic control plays an important role in many scientific and applied disciplines including communications, engineering, medicine, finance and many others. It is one of the effective methods being used to find optimal decision-making strategies in applications. The book provides a collection of outstanding investigations in various aspects of stochastic systems and their behavior. The book provides a self-contained treatment on practical aspects of stochastic modeling and calculus including applications drawn from engineering, statistics, and computer science. Readers should be familiar with basic probability theory and have a working knowledge of stochastic calculus. PhD students and researchers in stochastic control will find this book useful.
Publisher: BoD – Books on Demand
ISBN: 9535108301
Category : Mathematics
Languages : en
Pages : 288
Book Description
Stochastic control plays an important role in many scientific and applied disciplines including communications, engineering, medicine, finance and many others. It is one of the effective methods being used to find optimal decision-making strategies in applications. The book provides a collection of outstanding investigations in various aspects of stochastic systems and their behavior. The book provides a self-contained treatment on practical aspects of stochastic modeling and calculus including applications drawn from engineering, statistics, and computer science. Readers should be familiar with basic probability theory and have a working knowledge of stochastic calculus. PhD students and researchers in stochastic control will find this book useful.