System Identification and Adaptive Control

System Identification and Adaptive Control PDF Author: Yiannis Boutalis
Publisher: Springer Science & Business
ISBN: 3319063642
Category : Technology & Engineering
Languages : en
Pages : 316

Get Book Here

Book Description
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.

System Identification and Adaptive Control

System Identification and Adaptive Control PDF Author: Yiannis Boutalis
Publisher: Springer Science & Business
ISBN: 3319063642
Category : Technology & Engineering
Languages : en
Pages : 316

Get Book Here

Book Description
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.

Adaptive Nonlinear System Identification

Adaptive Nonlinear System Identification PDF Author: Tokunbo Ogunfunmi
Publisher: Springer Science & Business Media
ISBN: 0387686304
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
Focuses on System Identification applications of the adaptive methods presented. but which can also be applied to other applications of adaptive nonlinear processes. Covers recent research results in the area of adaptive nonlinear system identification from the authors and other researchers in the field.

Adaptive Learning Methods for Nonlinear System Modeling

Adaptive Learning Methods for Nonlinear System Modeling PDF Author: Danilo Comminiello
Publisher: Butterworth-Heinemann
ISBN: 0128129778
Category : Technology & Engineering
Languages : en
Pages : 390

Get Book Here

Book Description
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.

Stochastic Systems

Stochastic Systems PDF Author: P. R. Kumar
Publisher: SIAM
ISBN: 1611974259
Category : Mathematics
Languages : en
Pages : 371

Get Book Here

Book Description
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.

Adaptive Control

Adaptive Control PDF Author: Shankar Sastry
Publisher: Courier Corporation
ISBN: 0486482022
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
This volume surveys the major results and techniques of analysis in the field of adaptive control. Focusing on linear, continuous time, single-input, single-output systems, the authors offer a clear, conceptual presentation of adaptive methods, enabling a critical evaluation of these techniques and suggesting avenues of further development. 1989 edition.

SYSTEM IDENTIFICATION USING ADAPTIVE CONTROL SYSTEMS

SYSTEM IDENTIFICATION USING ADAPTIVE CONTROL SYSTEMS PDF Author: Dr. SHAIK RAFI KIRAN
Publisher: Lulu.com
ISBN: 1329937201
Category :
Languages : en
Pages : 118

Get Book Here

Book Description


Fuzzy System Identification and Adaptive Control

Fuzzy System Identification and Adaptive Control PDF Author: Ruiyun Qi
Publisher: Springer
ISBN: 3030198820
Category : Technology & Engineering
Languages : en
Pages : 293

Get Book Here

Book Description
This book provides readers with a systematic and unified framework for identification and adaptive control of Takagi–Sugeno (T–S) fuzzy systems. Its design techniques help readers applying these powerful tools to solve challenging nonlinear control problems. The book embodies a systematic study of fuzzy system identification and control problems, using T–S fuzzy system tools for both function approximation and feedback control of nonlinear systems. Alongside this framework, the book also: introduces basic concepts of fuzzy sets, logic and inference system; discusses important properties of T–S fuzzy systems; develops offline and online identification algorithms for T–S fuzzy systems; investigates the various controller structures and corresponding design conditions for adaptive control of continuous-time T–S fuzzy systems; develops adaptive control algorithms for discrete-time input–output form T–S fuzzy systems with much relaxed design conditions, and discrete-time state-space T–S fuzzy systems; and designs stable parameter-adaptation algorithms for both linearly and nonlinearly parameterized T–S fuzzy systems. The authors address adaptive fault compensation problems for T–S fuzzy systems subject to actuator faults. They cover a broad spectrum of related technical topics and to develop a substantial set of adaptive nonlinear system control tools. Fuzzy System Identification and Adaptive Control helps engineers in the mechanical, electrical and aerospace fields, to solve complex control design problems. The book can be used as a reference for researchers and academics in nonlinear, intelligent, adaptive and fault-tolerant control.

Robust Adaptive Control

Robust Adaptive Control PDF Author: Petros Ioannou
Publisher: Courier Corporation
ISBN: 0486320723
Category : Technology & Engineering
Languages : en
Pages : 850

Get Book Here

Book Description
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.

Adaptive Control Tutorial

Adaptive Control Tutorial PDF Author: Petros Ioannou
Publisher: SIAM
ISBN: 0898716152
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index

Adaptive Control

Adaptive Control PDF Author: Dianwei Qian
Publisher:
ISBN: 9781536131185
Category : Adaptive control systems
Languages : en
Pages : 233

Get Book Here

Book Description
Adaptive control is the control method used by a controller which must adapt to a controlled system with parameters which vary, or are initially uncertain. An adaptive control system utilizes on-line identification of which either system parameter or controller parameter, which does not need a priori information about the bounds on these uncertain or time-varying parameters. These approaches consider their control design in the sense of Lyapunov. Besides, there are still some branches by combining adaptive control and other control methods, i.e., nonlinear control methods, intelligent control methods, and predict control methods, to name but a few. Addresses some original contributions reporting the latest advances in adaptive control. It aims to gather the latest research on state-of-the-art methods, applications and research for the adaptive control theory, and recent new findings obtained by the technique of adaptive control. Apparently, the book cannot include all research topics. Different aspects of adaptive control are explored. Chapters includes some new tendencies and developments in research on a adaptive formation controller for multi-robot systems; L1 adaptive control design of the the longitudinal dynamics of a hypersonic vehicle model; adaptive high-gain control of biologically inspired receptor systems; adaptive residual vibration suppression of sigid-flexible coupled systems; neuro-hierarchical sliding mode control for under-actuated mechanical systems; neural network adaptive PID control design based on PLC for a water-level system; and fuzzy-based design of networked control systems with random time delays and packet dropout in the forward communication channel--