Author: Fernando Zalamea
Publisher: MIT Press
ISBN: 1913029328
Category : Philosophy
Languages : en
Pages : 394
Book Description
A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest. A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest, this book gives the inquisitive non-specialist an insight into the conceptual transformations and intellectual orientations of modern and contemporary mathematics. The predominant analytic approach, with its focus on the formal, the elementary and the foundational, has effectively divorced philosophy from the real practice of mathematics and the profound conceptual shifts in the discipline over the last century. The first part discusses the specificity of modern (1830–1950) and contemporary (1950 to the present) mathematics, and reviews the failure of mainstream philosophy of mathematics to address this specificity. Building on the work of the few exceptional thinkers to have engaged with the “real mathematics” of their era (including Lautman, Deleuze, Badiou, de Lorenzo and Châtelet), Zalamea challenges philosophy's self-imposed ignorance of the “making of mathematics.” In the second part, thirteen detailed case studies examine the greatest creators in the field, mapping the central advances accomplished in mathematics over the last half-century, exploring in vivid detail the characteristic creative gestures of modern master Grothendieck and contemporary creators including Lawvere, Shelah, Connes, and Freyd. Drawing on these concrete examples, and oriented by a unique philosophical constellation (Peirce, Lautman, Merleau-Ponty), in the third part Zalamea sets out the program for a sophisticated new epistemology, one that will avail itself of the powerful conceptual instruments forged by the mathematical mind, but which have until now remained largely neglected by philosophers.
Synthetic Philosophy of Contemporary Mathematics
Author: Fernando Zalamea
Publisher: MIT Press
ISBN: 1913029328
Category : Philosophy
Languages : en
Pages : 394
Book Description
A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest. A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest, this book gives the inquisitive non-specialist an insight into the conceptual transformations and intellectual orientations of modern and contemporary mathematics. The predominant analytic approach, with its focus on the formal, the elementary and the foundational, has effectively divorced philosophy from the real practice of mathematics and the profound conceptual shifts in the discipline over the last century. The first part discusses the specificity of modern (1830–1950) and contemporary (1950 to the present) mathematics, and reviews the failure of mainstream philosophy of mathematics to address this specificity. Building on the work of the few exceptional thinkers to have engaged with the “real mathematics” of their era (including Lautman, Deleuze, Badiou, de Lorenzo and Châtelet), Zalamea challenges philosophy's self-imposed ignorance of the “making of mathematics.” In the second part, thirteen detailed case studies examine the greatest creators in the field, mapping the central advances accomplished in mathematics over the last half-century, exploring in vivid detail the characteristic creative gestures of modern master Grothendieck and contemporary creators including Lawvere, Shelah, Connes, and Freyd. Drawing on these concrete examples, and oriented by a unique philosophical constellation (Peirce, Lautman, Merleau-Ponty), in the third part Zalamea sets out the program for a sophisticated new epistemology, one that will avail itself of the powerful conceptual instruments forged by the mathematical mind, but which have until now remained largely neglected by philosophers.
Publisher: MIT Press
ISBN: 1913029328
Category : Philosophy
Languages : en
Pages : 394
Book Description
A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest. A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest, this book gives the inquisitive non-specialist an insight into the conceptual transformations and intellectual orientations of modern and contemporary mathematics. The predominant analytic approach, with its focus on the formal, the elementary and the foundational, has effectively divorced philosophy from the real practice of mathematics and the profound conceptual shifts in the discipline over the last century. The first part discusses the specificity of modern (1830–1950) and contemporary (1950 to the present) mathematics, and reviews the failure of mainstream philosophy of mathematics to address this specificity. Building on the work of the few exceptional thinkers to have engaged with the “real mathematics” of their era (including Lautman, Deleuze, Badiou, de Lorenzo and Châtelet), Zalamea challenges philosophy's self-imposed ignorance of the “making of mathematics.” In the second part, thirteen detailed case studies examine the greatest creators in the field, mapping the central advances accomplished in mathematics over the last half-century, exploring in vivid detail the characteristic creative gestures of modern master Grothendieck and contemporary creators including Lawvere, Shelah, Connes, and Freyd. Drawing on these concrete examples, and oriented by a unique philosophical constellation (Peirce, Lautman, Merleau-Ponty), in the third part Zalamea sets out the program for a sophisticated new epistemology, one that will avail itself of the powerful conceptual instruments forged by the mathematical mind, but which have until now remained largely neglected by philosophers.
Mathematics, Ideas and the Physical Real
Author: Albert Lautman
Publisher: A&C Black
ISBN: 1441146547
Category : Philosophy
Languages : en
Pages : 354
Book Description
Albert Lautman (1908-1944) was a French philosopher of mathematics whose work played a crucial role in the history of contemporary French philosophy. His ideas have had an enormous influence on key contemporary thinkers including Gilles Deleuze and Alain Badiou, for whom he is a major touchstone in the development of their own engagements with mathematics. Mathematics, Ideas and the Physical Real presents the first English translation of Lautman's published works between 1933 and his death in 1944. Rather than being preoccupied with the relation of mathematics to logic or with the problems of foundation, which have dominated philosophical reflection on mathematics, Lautman undertakes to develop an understanding of the broader structure of mathematics and its evolution. The two powerful ideas that are constants throughout his work, and which have dominated subsequent developments in mathematics, are the concept of mathematical structure and the idea of the essential unity underlying the apparent multiplicity of mathematical disciplines. This collection of his major writings offers readers a much-needed insight into his influence on the development of mathematics and philosophy.
Publisher: A&C Black
ISBN: 1441146547
Category : Philosophy
Languages : en
Pages : 354
Book Description
Albert Lautman (1908-1944) was a French philosopher of mathematics whose work played a crucial role in the history of contemporary French philosophy. His ideas have had an enormous influence on key contemporary thinkers including Gilles Deleuze and Alain Badiou, for whom he is a major touchstone in the development of their own engagements with mathematics. Mathematics, Ideas and the Physical Real presents the first English translation of Lautman's published works between 1933 and his death in 1944. Rather than being preoccupied with the relation of mathematics to logic or with the problems of foundation, which have dominated philosophical reflection on mathematics, Lautman undertakes to develop an understanding of the broader structure of mathematics and its evolution. The two powerful ideas that are constants throughout his work, and which have dominated subsequent developments in mathematics, are the concept of mathematical structure and the idea of the essential unity underlying the apparent multiplicity of mathematical disciplines. This collection of his major writings offers readers a much-needed insight into his influence on the development of mathematics and philosophy.
Analysis and Synthesis in Mathematics
Author: Michael Otte
Publisher: Springer Science & Business Media
ISBN: 9780792345701
Category : History
Languages : en
Pages : 476
Book Description
The book discusses the main interpretations of the classical distinction between analysis and synthesis with respect to mathematics. In the first part, this is discussed from a historical point of view, by considering different examples from the history of mathematics. In the second part, the question is considered from a philosophical point of view, and some new interpretations are proposed. Finally, in the third part, one of the editors discusses some common aspects of the different interpretations.
Publisher: Springer Science & Business Media
ISBN: 9780792345701
Category : History
Languages : en
Pages : 476
Book Description
The book discusses the main interpretations of the classical distinction between analysis and synthesis with respect to mathematics. In the first part, this is discussed from a historical point of view, by considering different examples from the history of mathematics. In the second part, the question is considered from a philosophical point of view, and some new interpretations are proposed. Finally, in the third part, one of the editors discusses some common aspects of the different interpretations.
The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics
Author: John L. Bell
Publisher: Springer Nature
ISBN: 3030187071
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.
Publisher: Springer Nature
ISBN: 3030187071
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.
Thinking about Mathematics
Author: Stewart Shapiro
Publisher: OUP Oxford
ISBN: 0192893068
Category : Philosophy
Languages : en
Pages : 323
Book Description
Thinking about Mathematics covers the range of philosophical issues and positions concerning mathematics. The text describes the questions about mathematics that motivated philosophers throughout history and covers historical figures such as Plato, Aristotle, Kant, and Mill. It also presents the major positions and arguments concerning mathematics throughout the twentieth century, bringing the reader up to the present positions and battle lines.
Publisher: OUP Oxford
ISBN: 0192893068
Category : Philosophy
Languages : en
Pages : 323
Book Description
Thinking about Mathematics covers the range of philosophical issues and positions concerning mathematics. The text describes the questions about mathematics that motivated philosophers throughout history and covers historical figures such as Plato, Aristotle, Kant, and Mill. It also presents the major positions and arguments concerning mathematics throughout the twentieth century, bringing the reader up to the present positions and battle lines.
Diagrammatic Immanence
Author: Rocco Gangle
Publisher: Edinburgh University Press
ISBN: 1474404189
Category : Philosophy
Languages : en
Pages : 265
Book Description
Rocco Gangle addresses the methodological questions raised by a commitment to immanence in terms of how diagrams may be used both as tools and as objects of philosophical investigation. Gangle integrates insights from Spinoza, Pierce and Deleuze in conjunction with the formal operations of category theory.
Publisher: Edinburgh University Press
ISBN: 1474404189
Category : Philosophy
Languages : en
Pages : 265
Book Description
Rocco Gangle addresses the methodological questions raised by a commitment to immanence in terms of how diagrams may be used both as tools and as objects of philosophical investigation. Gangle integrates insights from Spinoza, Pierce and Deleuze in conjunction with the formal operations of category theory.
Collapse, Volume 1
Author: Robin Mackay
Publisher: MIT Press
ISBN: 0993045820
Category : Philosophy
Languages : en
Pages : 295
Book Description
An investigation of the nature and philosophical uses of number. The first volume of Collapse investigates the nature and philosophical uses of number. The volume includes an interview with Alain Badiou on the relation between philosophy, mathematics, and science, an in-depth interview with mathematician Matthew Watkins on the strange connections between physics and the distribution of prime numbers, and contributions that demonstrate the many ways in which number intersects with philosophical thought—from the mathematics of intensity to terrorism, from occultism to information theory, and graphical works of multiplicity.
Publisher: MIT Press
ISBN: 0993045820
Category : Philosophy
Languages : en
Pages : 295
Book Description
An investigation of the nature and philosophical uses of number. The first volume of Collapse investigates the nature and philosophical uses of number. The volume includes an interview with Alain Badiou on the relation between philosophy, mathematics, and science, an in-depth interview with mathematician Matthew Watkins on the strange connections between physics and the distribution of prime numbers, and contributions that demonstrate the many ways in which number intersects with philosophical thought—from the mathematics of intensity to terrorism, from occultism to information theory, and graphical works of multiplicity.
Introduction to Mathematical Philosophy
Author: Bertrand Russell
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
America—An Integral Weave
Author: Fernando Zalamea
Publisher: MIT Press
ISBN: 1733628185
Category : Philosophy
Languages : en
Pages : 248
Book Description
A dynamic critical and philosophical study of modern North American and Latin American cultures via art, architecture, philosophy and mathematics. With an unprecedented ease of movement between literature, music, art, architecture, mathematics, and philosophy, this richly illustrated study enters into the "electromagnetic field" between Latin America and North America with two complementary essays examining some of the principal features of their intellectual and creative landscapes throughout the nineteenth and twentieth centuries. "Under the Sign of Jonah" explores how nineteenth-century North American culture adopted and transformed the legacy of romanticism, with sensitive readings of the work of Herman Melville, Albert Pinkham Ryder, and Charles Sanders Peirce among others, before turning to the continued presence of romantic problematics in Edgar Varèse’s music, Frank Gehry’s architecture, and the conceptual mathematics of William Lawvere. "The Borders and the Pendulum" addresses Latin America as a margin in continual dialogue with 'major' culture, detailing the movement from a universalist panoscopy which imagined an integrated American culture to a mid-century microscopy focused on the regional, to late twentieth-century responses to postmodernism in the form of a telescopy that operates both a differentiation into the local and a transversal integration into universal modernity. Continually shuttling across disciplinary borders, Zalamea approaches his subjects with a philosophical depth and conceptual agility that is a mark of the true polymath; his thought-diagrams of a dynamic continent are an indispensable guide to the transits and syntheses not only between the Americas, but between the romantic, the modern, and the contemporary, supplying the attentive reader with all the equipment they need to venture off the beaten paths of (post)modernity.
Publisher: MIT Press
ISBN: 1733628185
Category : Philosophy
Languages : en
Pages : 248
Book Description
A dynamic critical and philosophical study of modern North American and Latin American cultures via art, architecture, philosophy and mathematics. With an unprecedented ease of movement between literature, music, art, architecture, mathematics, and philosophy, this richly illustrated study enters into the "electromagnetic field" between Latin America and North America with two complementary essays examining some of the principal features of their intellectual and creative landscapes throughout the nineteenth and twentieth centuries. "Under the Sign of Jonah" explores how nineteenth-century North American culture adopted and transformed the legacy of romanticism, with sensitive readings of the work of Herman Melville, Albert Pinkham Ryder, and Charles Sanders Peirce among others, before turning to the continued presence of romantic problematics in Edgar Varèse’s music, Frank Gehry’s architecture, and the conceptual mathematics of William Lawvere. "The Borders and the Pendulum" addresses Latin America as a margin in continual dialogue with 'major' culture, detailing the movement from a universalist panoscopy which imagined an integrated American culture to a mid-century microscopy focused on the regional, to late twentieth-century responses to postmodernism in the form of a telescopy that operates both a differentiation into the local and a transversal integration into universal modernity. Continually shuttling across disciplinary borders, Zalamea approaches his subjects with a philosophical depth and conceptual agility that is a mark of the true polymath; his thought-diagrams of a dynamic continent are an indispensable guide to the transits and syntheses not only between the Americas, but between the romantic, the modern, and the contemporary, supplying the attentive reader with all the equipment they need to venture off the beaten paths of (post)modernity.
Carnap, Tarski, and Quine at Harvard
Author: Greg Frost-Arnold
Publisher: Open Court
ISBN: 0812698304
Category : Philosophy
Languages : en
Pages : 273
Book Description
A reconstruction of the lines of argument used by Carnap, Tarski, and Quine, highlighting their historical significance and contemporary relevance based on Carnap's own notes from his conversations of the time.During the academic year 1940-1941, several giants of analytic philosophy congregated at Harvard, holding regular private meetings, with Carnap, Tarski, and Quine. 'Carnap, Tarski, and Quine at Harvard' allows the reader to act as a fly on the wall for their conversations. Carnap took detailed notes during his year at Harvard. This book includes both a German transcription of these shorthand notes and an English translation in the appendix section. Carnap's notes cover a wide range of topics, but surprisingly, the most prominent question is: If the number of physical items in the universe is finite, what form should scientific discourse take? This question is closely connected to anabiding philosophical problem: What is the relationship between the logico-mathematical realm and the material realm? Carnap, Tarski, and Quine's attempts to answer this question involve issues central to philosophy today.This book focuses on three such issues: nominalism, the unity of science, and analyticity. In short, the book reconstructs the lines of argument represented in these Harvard discussions, discusses their historical significance (especially Quine's break from Carnap),and relates them when possible to contemporary treatments of these issues.
Publisher: Open Court
ISBN: 0812698304
Category : Philosophy
Languages : en
Pages : 273
Book Description
A reconstruction of the lines of argument used by Carnap, Tarski, and Quine, highlighting their historical significance and contemporary relevance based on Carnap's own notes from his conversations of the time.During the academic year 1940-1941, several giants of analytic philosophy congregated at Harvard, holding regular private meetings, with Carnap, Tarski, and Quine. 'Carnap, Tarski, and Quine at Harvard' allows the reader to act as a fly on the wall for their conversations. Carnap took detailed notes during his year at Harvard. This book includes both a German transcription of these shorthand notes and an English translation in the appendix section. Carnap's notes cover a wide range of topics, but surprisingly, the most prominent question is: If the number of physical items in the universe is finite, what form should scientific discourse take? This question is closely connected to anabiding philosophical problem: What is the relationship between the logico-mathematical realm and the material realm? Carnap, Tarski, and Quine's attempts to answer this question involve issues central to philosophy today.This book focuses on three such issues: nominalism, the unity of science, and analyticity. In short, the book reconstructs the lines of argument represented in these Harvard discussions, discusses their historical significance (especially Quine's break from Carnap),and relates them when possible to contemporary treatments of these issues.