Synthesis and Application of Ceramic Paste for High-temperature Electronic Packaging

Synthesis and Application of Ceramic Paste for High-temperature Electronic Packaging PDF Author: Ardalan Nasiri
Publisher:
ISBN:
Category :
Languages : en
Pages : 212

Get Book Here

Book Description
This dissertation research focused on the synthesis and application of ceramic paste for high-temperature applications. An alumina paste material comprising aluminum dihydric phosphate and alumina powder was developed for high-temperature electronic packaging. Nano aluminum nitride and nano-silica powders were embedded to promote the paste curing process, limit the grain growth, and increase its bond shear strength. The chip-to-substrate bond strength was enhanced and met the MIL-STD requirements for die-attach assembly. Its encapsulation property was improved with fewer cracks compared to similar commercial ceramic encapsulants. The die-attach material and encapsulation properties tested at 500°C showed no defect or additional cracks. Thermal aging and thermal cycling were carried out on the synthesized paste. XPS analysis revealed a higher oxygen bonding percentage for the 10% nanosilica ceramic sample than other samples. XRD peak broadening is largest for the 10% nano-silica ceramic which indicated smaller crystallite sizes. The smaller crystallite size for the 10% nanosilica sample introduces a larger microstrain to the alumina crystal structure. FTIR revealed the presence of alumina-silicate bonds on these samples with the largest amount present in the 10% nanosilica samples. SEM and EDX results showed a uniform bond line for the 10% sample and uniform material distribution. An electronic packaging technology that survives the Venusian condition was developed. Alumina ceramic substrates and gold conductors on alumina were evaluated for electrical and mechanical performance. The most promising die-attach materials were found to be thick-film gold and alumina-based ceramic pastes. Alumina, sapphire, silicon, and silicon carbide dice were attached to the alumina substrates using these die-attach materials and exposed to the Venusian condition for 244 hours. The devices on the packaging substrates were encapsulated by a ceramic encapsulant with no significant increase in cracks and voids after the Venusian simulator test. Wire pull strength tests were conducted on the gold bond wire to evaluate mechanical durability before and after the Venusian simulator exposure test with about 30.8% decrease which satisfied the minimum requirement for the MIL-STD-885 method. The overall wire-bond daisy-chain resistance change was 0.47% after the Venus simulator test, indicating a promising wire bond integrity. A titanium package was fabricated to house the ceramic packaging substrate and a two-level metalized feedthrough was fabricated to provide electrical interfaces to the package. A double-layer ceramic electronic packaging technology that survives the Venusian surface condition was developed using a ceramic interlayer dielectric with gold conductors. A 60-æm ceramic interlayer dielectric served as the insulator between the top and bottom gold conductors on high-purity ceramic substrates. Test devices with AuPtPd metallization were attached to the top gold pads using a thick-film gold paste. Thermal aging for 115 hours at 500°C and thermal cycling from room temperature to 450°C were performed. Dielectric leakage tests of the interlayer ceramic layer between the top and bottom gold conductors revealed a leakage current density of less than 50  10-7 A/cm2 at 600V after thermal cycling. The die shear test showed a 33% decrease in die shear strength after thermal tests but still satisfies the MIL-STD method.

Synthesis and Application of Ceramic Paste for High-temperature Electronic Packaging

Synthesis and Application of Ceramic Paste for High-temperature Electronic Packaging PDF Author: Ardalan Nasiri
Publisher:
ISBN:
Category :
Languages : en
Pages : 212

Get Book Here

Book Description
This dissertation research focused on the synthesis and application of ceramic paste for high-temperature applications. An alumina paste material comprising aluminum dihydric phosphate and alumina powder was developed for high-temperature electronic packaging. Nano aluminum nitride and nano-silica powders were embedded to promote the paste curing process, limit the grain growth, and increase its bond shear strength. The chip-to-substrate bond strength was enhanced and met the MIL-STD requirements for die-attach assembly. Its encapsulation property was improved with fewer cracks compared to similar commercial ceramic encapsulants. The die-attach material and encapsulation properties tested at 500°C showed no defect or additional cracks. Thermal aging and thermal cycling were carried out on the synthesized paste. XPS analysis revealed a higher oxygen bonding percentage for the 10% nanosilica ceramic sample than other samples. XRD peak broadening is largest for the 10% nano-silica ceramic which indicated smaller crystallite sizes. The smaller crystallite size for the 10% nanosilica sample introduces a larger microstrain to the alumina crystal structure. FTIR revealed the presence of alumina-silicate bonds on these samples with the largest amount present in the 10% nanosilica samples. SEM and EDX results showed a uniform bond line for the 10% sample and uniform material distribution. An electronic packaging technology that survives the Venusian condition was developed. Alumina ceramic substrates and gold conductors on alumina were evaluated for electrical and mechanical performance. The most promising die-attach materials were found to be thick-film gold and alumina-based ceramic pastes. Alumina, sapphire, silicon, and silicon carbide dice were attached to the alumina substrates using these die-attach materials and exposed to the Venusian condition for 244 hours. The devices on the packaging substrates were encapsulated by a ceramic encapsulant with no significant increase in cracks and voids after the Venusian simulator test. Wire pull strength tests were conducted on the gold bond wire to evaluate mechanical durability before and after the Venusian simulator exposure test with about 30.8% decrease which satisfied the minimum requirement for the MIL-STD-885 method. The overall wire-bond daisy-chain resistance change was 0.47% after the Venus simulator test, indicating a promising wire bond integrity. A titanium package was fabricated to house the ceramic packaging substrate and a two-level metalized feedthrough was fabricated to provide electrical interfaces to the package. A double-layer ceramic electronic packaging technology that survives the Venusian surface condition was developed using a ceramic interlayer dielectric with gold conductors. A 60-æm ceramic interlayer dielectric served as the insulator between the top and bottom gold conductors on high-purity ceramic substrates. Test devices with AuPtPd metallization were attached to the top gold pads using a thick-film gold paste. Thermal aging for 115 hours at 500°C and thermal cycling from room temperature to 450°C were performed. Dielectric leakage tests of the interlayer ceramic layer between the top and bottom gold conductors revealed a leakage current density of less than 50  10-7 A/cm2 at 600V after thermal cycling. The die shear test showed a 33% decrease in die shear strength after thermal tests but still satisfies the MIL-STD method.

Precursor-Derived Ceramics

Precursor-Derived Ceramics PDF Author: Joachim Bill
Publisher: John Wiley & Sons
ISBN: 3527613838
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
The production of high-purity ceramic materials from low-molecular weight, inorganic or organoelement precursors is a topic of increasing relevance within materials science. With this emerging technology it is possible to precisely tailor the properties of the ceramic material which enables new high-temperature or electronic applications. Every materials scientist and engineer involved in the research and development of new high-performance ceramic materials will find these results - presented at a recent workshop of the Max-Planck-Gesellschaft - of great importance for his own work.

Ceramic Substrates and Packages for Electronic Applications

Ceramic Substrates and Packages for Electronic Applications PDF Author: Man F. Yan
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 632

Get Book Here

Book Description


Nano-Bio- Electronic, Photonic and MEMS Packaging

Nano-Bio- Electronic, Photonic and MEMS Packaging PDF Author: C.P. Wong
Publisher: Springer Science & Business Media
ISBN: 1441900403
Category : Technology & Engineering
Languages : en
Pages : 761

Get Book Here

Book Description
Nanotechnologies are being applied to the biotechnology area, especially in the area of nano material synthesis. Until recently, there has been little research into how to implement nano/bio materials into the device level. “Nano and Bio Electronics Packaging” discusses how nanofabrication techniques can be used to customize packaging for nano devices with applications to biological and biomedical research and products. Covering such topics as nano bio sensing electronics, bio device packaging, NEMs for Bio Devices and much more.

Nano-Bio- Electronic, Photonic and MEMS Packaging

Nano-Bio- Electronic, Photonic and MEMS Packaging PDF Author: C. P.(Ching-Ping) Wong
Publisher: Springer Nature
ISBN: 303049991X
Category : Technology & Engineering
Languages : en
Pages : 582

Get Book Here

Book Description
This book shows how nanofabrication techniques and nanomaterials can be used to customize packaging for nano devices with applications to electronics, photonics, biological and biomedical research and products. It covers topics such as bio sensing electronics, bio device packaging, MEMS for bio devices and much more, including: Offers a comprehensive overview of nano and bio packaging and their materials based on their chemical and physical sciences and mechanical, electrical and material engineering perspectives; Discusses nano materials as power energy sources, computational analyses of nano materials including molecular dynamic (MD) simulations and DFT calculations; Analyzes nanotubes, superhydrophobic self-clean Lotus surfaces; Covers nano chemistry for bio sensor/bio material device packaging. This second edition includes new chapters on soft materials-enabled packaging for stretchable and wearable electronics, state of the art miniaturization for active implantable medical devices, recent LED packaging and progress, nanomaterials for recent energy storage devices such as lithium ion batteries and supercapacitors and their packaging. Nano- Bio- Electronic, Photonic and MEMS Packaging is the ideal book for all biomedical engineers, industrial electronics packaging engineers, and those engaged in bio nanotechnology applications research.

High Thermal Conductivity Ceramics and Their Composites for Thermal Management of Integrated Electronic Packaging

High Thermal Conductivity Ceramics and Their Composites for Thermal Management of Integrated Electronic Packaging PDF Author: Hyo Tae Kim
Publisher:
ISBN:
Category : Science
Languages : en
Pages :

Get Book Here

Book Description
Recently, ceramic substrates have been of great interest for use in light emitting diode (LED) packaging materials because of their excellent heat transfer capability. The thermal conductivities of ceramic-based substrates are usually one or two orders of magnitude higher than those of conventional epoxy-based substrates. The demand for ceramic substrates with high mechanical strength and thermal conductivity is also growing due to their use in thin and high-power device packaging substrates. Examples are direct bonded copper or aluminum or direct plated copper substrates for insulated gate bipolar transistors; thin and robust ceramic packages for image sensor modules that are used in mobile smart phones; ceramic packages for miniaturized chip-type supercapacitors; and high-power LED packages. This chapter will cover the development and application of ceramics and ceramic composites with high thermal conductivity for the thermal management of integrated electronic packaging substrates such as high-power LED packaging, power device packaging, et cetera.

Advanced Processing of Ceramic Compounds

Advanced Processing of Ceramic Compounds PDF Author: William L. Frankhouser
Publisher: William Andrew
ISBN:
Category : Science
Languages : en
Pages : 196

Get Book Here

Book Description


High-Performance Ceramics V

High-Performance Ceramics V PDF Author: Wei Pan
Publisher: Trans Tech Publications Ltd
ISBN: 3038131938
Category : Technology & Engineering
Languages : en
Pages : 2000

Get Book Here

Book Description
Volume is indexed by Thomson Reuters CPCI-S (WoS). This special volume presents, discusses and reviews the latest advances in the science and technology of high-performance ceramics. The editors received more than 700 contributions from which, following a strict peer-review process, more than 598 manuscripts were chosen for inclusion in this collection.

Ceramic Interconnect Technology Handbook

Ceramic Interconnect Technology Handbook PDF Author: Fred D. Barlow, III
Publisher: CRC Press
ISBN: 1351837176
Category : Technology & Engineering
Languages : en
Pages : 373

Get Book Here

Book Description
Ceramics were among the first materials used as substrates for mass-produced electronics, and they remain an important class of packaging and interconnect material today. Most available information about ceramic electronics is either outdated or focused on their materials science characteristics. The Ceramic Interconnect Technology Handbook goes beyond the traditional approach by first surveying the unique properties of ceramics and then discussing design, processing, fabrication, and integration, as well as packaging and interconnect technologies. Collecting contributions from an outstanding panel of experts, this book offers an up-to-date overview of modern ceramic electronics, from design and material selection to manufacturing and implementation. Beginning with an overview of the development, properties, advantages, and applications of ceramics, coverage spans electrical design, testing, simulation, thermomechanical design, screen printing, multilayer ceramics, photo-defined and photo-imaged films, copper interconnects for ceramic substrates, and integrated passive devices in ceramic substrates. It also offers a detailed review of the surface, thermal, mechanical, and electrical properties of various ceramics as well as the processing of high- and low-temperature cofired ceramic (HTCC and LTCC) substrates. Opening new vistas and avenues of advancement, the Ceramic Interconnect Technology Handbook is the only source for comprehensive discussion and analysis of nearly every facet of ceramic interconnect technology and applications.

Science Abstracts

Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 1360

Get Book Here

Book Description