Symplectic Geometry And Mirror Symmetry - Proceedings Of The 4th Kias Annual International Conference

Symplectic Geometry And Mirror Symmetry - Proceedings Of The 4th Kias Annual International Conference PDF Author: Kenji Fukaya
Publisher: World Scientific
ISBN: 9814490407
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
In 1993, M Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi-Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the A∞-category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger-Yau-Zaslow in the geometric set-up of (special) Lagrangian torus fibrations. It rapidly expanded its scope across from geometry, topology, algebra to physics.In this volume, leading experts in the field explore recent developments in relation to homological mirror symmetry, Floer theory, D-branes and Gromov-Witten invariants. Kontsevich-Soibelman describe their solution to the mirror conjecture on the abelian variety based on the deformation theory of A∞-categories, and Ohta describes recent work on the Lagrangian intersection Floer theory by Fukaya-Oh-Ohta-Ono which takes an important step towards a rigorous construction of the A∞-category. There follow a number of contributions on the homological mirror symmetry, D-branes and the Gromov-Witten invariants, e.g. Getzler shows how the Toda conjecture follows from recent work of Givental, Okounkov and Pandharipande. This volume provides a timely presentation of the important developments of recent years in this rapidly growing field.

Symplectic Geometry And Mirror Symmetry - Proceedings Of The 4th Kias Annual International Conference

Symplectic Geometry And Mirror Symmetry - Proceedings Of The 4th Kias Annual International Conference PDF Author: Kenji Fukaya
Publisher: World Scientific
ISBN: 9814490407
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
In 1993, M Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi-Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the A∞-category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger-Yau-Zaslow in the geometric set-up of (special) Lagrangian torus fibrations. It rapidly expanded its scope across from geometry, topology, algebra to physics.In this volume, leading experts in the field explore recent developments in relation to homological mirror symmetry, Floer theory, D-branes and Gromov-Witten invariants. Kontsevich-Soibelman describe their solution to the mirror conjecture on the abelian variety based on the deformation theory of A∞-categories, and Ohta describes recent work on the Lagrangian intersection Floer theory by Fukaya-Oh-Ohta-Ono which takes an important step towards a rigorous construction of the A∞-category. There follow a number of contributions on the homological mirror symmetry, D-branes and the Gromov-Witten invariants, e.g. Getzler shows how the Toda conjecture follows from recent work of Givental, Okounkov and Pandharipande. This volume provides a timely presentation of the important developments of recent years in this rapidly growing field.

Symplectic Geometry and Mirror Symmetry

Symplectic Geometry and Mirror Symmetry PDF Author: Kenji Fukaya
Publisher: World Scientific
ISBN: 9810247141
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
In 1993, M Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi-Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the Aì-category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger-Yau-Zaslow in the geometric set-up of (special) Lagrangian torus fibrations. It rapidly expanded its scope across from geometry, topology, algebra to physics.In this volume, leading experts in the field explore recent developments in relation to homological mirror symmetry, Floer theory, D-branes and Gromov-Witten invariants. Kontsevich-Soibelman describe their solution to the mirror conjecture on the abelian variety based on the deformation theory of Aì-categories, and Ohta describes recent work on the Lagrangian intersection Floer theory by Fukaya-Oh-Ohta-Ono which takes an important step towards a rigorous construction of the Aì-category. There follow a number of contributions on the homological mirror symmetry, D-branes and the Gromov-Witten invariants, e.g. Getzler shows how the Toda conjecture follows from recent work of Givental, Okounkov and Pandharipande. This volume provides a timely presentation of the important developments of recent years in this rapidly growing field.

Symplectic Geometry and Mirror Symmetry

Symplectic Geometry and Mirror Symmetry PDF Author: Kodŭng Kwahagwŏn (Korea). International Conference
Publisher: World Scientific
ISBN: 9789812799821
Category : Mirror symmetry
Languages : en
Pages : 940

Get Book Here

Book Description
In 1993, M. Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi–Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the A∞-category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger–Yau–Zaslow in the geometric set-up of (special) Lagrangian torus fibrations. It rapidly expanded its scope across from geometry, topology, algebra to physics. In this volume, leading experts in the field explore recent developments in relation to homological mirror symmetry, Floer theory, D-branes and Gromov–Witten invariants. Kontsevich-Soibelman describe their solution to the mirror conjecture on the abelian variety based on the deformation theory of A∞-categories, and Ohta describes recent work on the Lagrangian intersection Floer theory by Fukaya–Oh–Ohta–Ono which takes an important step towards a rigorous construction of the A∞-category. There follow a number of contributions on the homological mirror symmetry, D-branes and the Gromov–Witten invariants, e.g. Getzler shows how the Toda conjecture follows from recent work of Givental, Okounkov and Pandharipande. This volume provides a timely presentation of the important developments of recent years in this rapidly growing field.

Calabi-Yau Manifolds and Related Geometries

Calabi-Yau Manifolds and Related Geometries PDF Author: Mark Gross
Publisher: Springer Science & Business Media
ISBN: 3642190049
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
This is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory. Proofs or sketches are given for many important results. From the reviews: "An excellent introduction to current research in the geometry of Calabi-Yau manifolds, hyper-Kähler manifolds, exceptional holonomy and mirror symmetry....This is an excellent and useful book." --MATHEMATICAL REVIEWS

The Unity of Mathematics

The Unity of Mathematics PDF Author: Pavel Etingof
Publisher: Springer Science & Business Media
ISBN: 0817644679
Category : Mathematics
Languages : en
Pages : 646

Get Book Here

Book Description
Tribute to the vision and legacy of Israel Moiseevich Gel'fand Written by leading mathematicians, these invited papers reflect the unity of mathematics as a whole, with particular emphasis on the many connections among the fields of geometry, physics, and representation theory Topics include conformal field theory, K-theory, noncommutative geometry, gauge theory, representations of infinite-dimensional Lie algebras, and various aspects of the Langlands program

Fukaya Categories and Picard-Lefschetz Theory

Fukaya Categories and Picard-Lefschetz Theory PDF Author: Paul Seidel
Publisher: European Mathematical Society
ISBN: 9783037190630
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
The central objects in the book are Lagrangian submanifolds and their invariants, such as Floer homology and its multiplicative structures, which together constitute the Fukaya category. The relevant aspects of pseudo-holomorphic curve theory are covered in some detail, and there is also a self-contained account of the necessary homological algebra. Generally, the emphasis is on simplicity rather than generality. The last part discusses applications to Lefschetz fibrations and contains many previously unpublished results. The book will be of interest to graduate students and researchers in symplectic geometry and mirror symmetry.

Toric Topology

Toric Topology PDF Author: Megumi Harada
Publisher: American Mathematical Soc.
ISBN: 0821844865
Category : Mathematics
Languages : en
Pages : 424

Get Book Here

Book Description
Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifold interact in a rich variety of ways, thus illuminating subtle aspects of both the combinatorics and the equivariant topology. Many of the motivations and guiding principles of the fieldare provided by (though not limited to) the theory of toric varieties in algebraic geometry as well as that of symplectic toric manifolds in symplectic geometry.This volume is the proceedings of the International Conference on Toric Topology held in Osaka in May-June 2006. It contains about 25 research and survey articles written by conference speakers, covering many different aspects of, and approaches to, torus actions, such as those mentioned above. Some of the manuscripts are survey articles, intended to give a broad overview of an aspect of the subject; all manuscripts consciously aim to be accessible to a broad reading audience of students andresearchers interested in the interaction of the subjects involved. We hope that this volume serves as an enticing invitation to this emerging field.

Algebraic Geometry

Algebraic Geometry PDF Author: Dan Abramovich
Publisher: American Mathematical Soc.
ISBN: 0821847023
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
This volume contains research and expository papers by some of the speakers at the 2005 AMS Summer Institute on Algebraic Geometry. Numerous papers delve into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties.

Deformation Spaces

Deformation Spaces PDF Author: Hossein Abbaspour
Publisher: Springer Science & Business Media
ISBN: 3834896802
Category : Mathematics
Languages : en
Pages : 174

Get Book Here

Book Description
The first instances of deformation theory were given by Kodaira and Spencer for complex structures and by Gerstenhaber for associative algebras. Since then, deformation theory has been applied as a useful tool in the study of many other mathematical structures, and even today it plays an important role in many developments of modern mathematics. This volume collects a few self-contained and peer-reviewed papers by experts which present up-to-date research topics in algebraic and motivic topology, quantum field theory, algebraic geometry, noncommutative geometry and the deformation theory of Poisson algebras. They originate from activities at the Max-Planck-Institute for Mathematics and the Hausdorff Center for Mathematics in Bonn.

Lagrangian Floer Theory and Its Deformations

Lagrangian Floer Theory and Its Deformations PDF Author: Yong-Geun Oh
Publisher: Springer Nature
ISBN: 9819717981
Category :
Languages : en
Pages : 426

Get Book Here

Book Description