An Introduction to Symbolic Dynamics and Coding

An Introduction to Symbolic Dynamics and Coding PDF Author: Douglas Lind
Publisher: Cambridge University Press
ISBN: 1108901964
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
Symbolic dynamics is a mature yet rapidly developing area of dynamical systems. It has established strong connections with many areas, including linear algebra, graph theory, probability, group theory, and the theory of computation, as well as data storage, statistical mechanics, and $C^*$-algebras. This Second Edition maintains the introductory character of the original 1995 edition as a general textbook on symbolic dynamics and its applications to coding. It is written at an elementary level and aimed at students, well-established researchers, and experts in mathematics, electrical engineering, and computer science. Topics are carefully developed and motivated with many illustrative examples. There are more than 500 exercises to test the reader's understanding. In addition to a chapter in the First Edition on advanced topics and a comprehensive bibliography, the Second Edition includes a detailed Addendum, with companion bibliography, describing major developments and new research directions since publication of the First Edition.

Symbolic Dynamics and its Applications

Symbolic Dynamics and its Applications PDF Author: Susan G. Williams
Publisher: American Mathematical Soc.
ISBN: 0821831577
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
Symbolic dynamics originated as a tool for analyzing dynamical systems and flows by discretizing space as well as time. The development of information theory gave impetus to the study of symbol sequences as objects in their own right. Today, symbolic dynamics has expanded to encompass multi-dimensional arrays of symbols and has found diverse applications both within and beyond mathematics. This volume is based on the AMS Short Course on Symbolic Dynamics and its Applications. It contains introductory articles on the fundamental ideas of the field and on some of its applications. Topics include the use of symbolic dynamics techniques in coding theory and in complex dynamics, the relation between the theory of multi-dimensional systems and the dynamics of tilings, and strong shift equivalence theory. Contributors to the volume are experts in the field and are clear expositors. The book is suitable for graduate students and research mathematicians interested in symbolic dynamics and its applications.

Symbolic Dynamics and its Applications

Symbolic Dynamics and its Applications PDF Author: Peter Walters
Publisher: American Mathematical Soc.
ISBN: 0821851462
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
This volume contains the proceedings of the conference, Symbolic Dynamics and its Applications, held at Yale University in the summer of 1991 in honour of Roy L. Adler on his sixtieth birthday. The conference focused on symbolic dynamics and its applications to other fields, including: ergodic theory, smooth dynamical systems, information theory, automata theory, and statistical mechanics. Featuring a range of contributions from some of the leaders in the field, this volume presents an excellent overview of the subject.

Applied Symbolic Dynamics And Chaos

Applied Symbolic Dynamics And Chaos PDF Author: Bailin Hao
Publisher: World Scientific
ISBN: 9814495972
Category : Science
Languages : en
Pages : 460

Get Book Here

Book Description
Latest Edition: Applied Symbolic Dynamics and Chaos (2nd Edition)Symbolic dynamics is a coarse-grained description of dynamics. It provides a rigorous way to understand the global systematics of periodic and chaotic motion in a system. In the last decade it has been applied to nonlinear systems described by one- and two-dimensional maps as well as by ordinary differential equations. This book will help practitioners in nonlinear science and engineering to master that powerful tool.

Combinatorics, Words and Symbolic Dynamics

Combinatorics, Words and Symbolic Dynamics PDF Author: Valérie Berthé
Publisher: Cambridge University Press
ISBN: 1107077028
Category : Computers
Languages : en
Pages : 496

Get Book Here

Book Description
Surveys trends arising from the applications and interactions between combinatorics, symbolic dynamics and theoretical computer science.

Dynamical Systems

Dynamical Systems PDF Author: Clark Robinson
Publisher: CRC Press
ISBN: 1482227878
Category : Mathematics
Languages : en
Pages : 522

Get Book Here

Book Description
Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student

Elementary Symbolic Dynamics and Chaos in Dissipative Systems

Elementary Symbolic Dynamics and Chaos in Dissipative Systems PDF Author: Bai-Lin Hao
Publisher: World Scientific
ISBN: 9789971506988
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
This book is a monograph on chaos in dissipative systems written for those working in the physical sciences. Emphasis is on symbolic description of the dynamics and various characteristics of the attractors, and written from the view-point of practical applications without going into formal mathematical rigour. The author used elementary mathematics and calculus, and relied on physical intuition whenever possible. Substantial attention is paid to numerical techniques in the study of chaos. Part of the book is based on the publications of Chinese researchers, including those of the author's collaborators.

Symbolic Modeling of Multibody Systems

Symbolic Modeling of Multibody Systems PDF Author: J-C. Samin
Publisher: Springer Science & Business Media
ISBN: 940170287X
Category : Technology & Engineering
Languages : en
Pages : 478

Get Book Here

Book Description
Modeling and analysing multibody systems require a comprehensive understanding of the kinematics and dynamics of rigid bodies. In this volume, the relevant fundamental principles are first reviewed in detail and illustrated in conformity with the multibody formalisms that follow. Whatever the kind of system (tree-like structures, closed-loop mechanisms, systems containing flexible beams or involving tire/ground contact, wheel/rail contact, etc), these multibody formalisms have a common feature in the proposed approach, viz, the symbolic generation of most of the ingredients needed to set up the model. The symbolic approach chosen, specially dedicated to multibody systems, affords various advantages: it leads to a simplification of the theoretical formulation of models, a considerable reduction in the size of generated equations and hence in resulting computing time, and also enhanced portability of the multibody models towards other specific environments. Moreover, the generation of multibody models as symbolic toolboxes proves to be an excellent pedagogical medium in teaching mechanics.

Introduction to the Modern Theory of Dynamical Systems

Introduction to the Modern Theory of Dynamical Systems PDF Author: Anatole Katok
Publisher: Cambridge University Press
ISBN: 9780521575577
Category : Mathematics
Languages : en
Pages : 828

Get Book Here

Book Description
This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

An Introduction to Dynamical Systems

An Introduction to Dynamical Systems PDF Author: Rex Clark Robinson
Publisher: American Mathematical Soc.
ISBN: 0821891359
Category : Mathematics
Languages : en
Pages : 763

Get Book Here

Book Description
This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.