Survival Models and Their Estimation

Survival Models and Their Estimation PDF Author: Dick London
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 348

Get Book Here

Book Description

Survival Models and Their Estimation

Survival Models and Their Estimation PDF Author: Dick London
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 348

Get Book Here

Book Description


Survival Models and Data Analysis

Survival Models and Data Analysis PDF Author: Regina C. Elandt-Johnson
Publisher: John Wiley & Sons
ISBN: 1119011035
Category : Mathematics
Languages : en
Pages : 490

Get Book Here

Book Description
Survival analysis deals with the distribution of life times, essentially the times from an initiating event such as birth or the start of a job to some terminal event such as death or pension. This book, originally published in 1980, surveys and analyzes methods that use survival measurements and concepts, and helps readers apply the appropriate method for a given situation. Four broad sections cover introductions to data, univariate survival function, multiple-failure data, and advanced topics.

Survival Analysis

Survival Analysis PDF Author: Xian Liu
Publisher: John Wiley & Sons
ISBN: 1118307674
Category : Mathematics
Languages : en
Pages : 433

Get Book Here

Book Description
Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.

Solutions Manual for Survival Models and Their Estimation

Solutions Manual for Survival Models and Their Estimation PDF Author: Dick London
Publisher:
ISBN: 9781566982924
Category : Insurance
Languages : en
Pages : 124

Get Book Here

Book Description


Advanced Survival Models

Advanced Survival Models PDF Author: Catherine Legrand
Publisher: CRC Press
ISBN: 0429622554
Category : Mathematics
Languages : en
Pages : 361

Get Book Here

Book Description
Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome Uses consistent notation throughout the book for the different techniques presented Explains in which situation each of these models should be used, and how they are linked to specific research questions Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.

Survival Analysis Using S

Survival Analysis Using S PDF Author: Mara Tableman
Publisher: CRC Press
ISBN: 0203501411
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
Survival Analysis Using S: Analysis of Time-to-Event Data is designed as a text for a one-semester or one-quarter course in survival analysis for upper-level or graduate students in statistics, biostatistics, and epidemiology. Prerequisites are a standard pre-calculus first course in probability and statistics, and a course in applied linear regression models. No prior knowledge of S or R is assumed. A wide choice of exercises is included, some intended for more advanced students with a first course in mathematical statistics. The authors emphasize parametric log-linear models, while also detailing nonparametric procedures along with model building and data diagnostics. Medical and public health researchers will find the discussion of cut point analysis with bootstrap validation, competing risks and the cumulative incidence estimator, and the analysis of left-truncated and right-censored data invaluable. The bootstrap procedure checks robustness of cut point analysis and determines cut point(s). In a chapter written by Stephen Portnoy, censored regression quantiles - a new nonparametric regression methodology (2003) - is developed to identify important forms of population heterogeneity and to detect departures from traditional Cox models. By generalizing the Kaplan-Meier estimator to regression models for conditional quantiles, this methods provides a valuable complement to traditional Cox proportional hazards approaches.

Introducing Survival and Event History Analysis

Introducing Survival and Event History Analysis PDF Author: Melinda Mills
Publisher: SAGE
ISBN: 1848601026
Category : Social Science
Languages : en
Pages : 301

Get Book Here

Book Description
This book is an accessible, practical and comprehensive guide for researchers from multiple disciplines including biomedical, epidemiology, engineering and the social sciences. Written for accessibility, this book will appeal to students and researchers who want to understand the basics of survival and event history analysis and apply these methods without getting entangled in mathematical and theoretical technicalities. Inside, readers are offered a blueprint for their entire research project from data preparation to model selection and diagnostics. Engaging, easy to read, functional and packed with enlightening examples, ‘hands-on’ exercises, conversations with key scholars and resources for both students and instructors, this text allows researchers to quickly master advanced statistical techniques. It is written from the perspective of the ‘user’, making it suitable as both a self-learning tool and graduate-level textbook. Also included are up-to-date innovations in the field, including advancements in the assessment of model fit, unobserved heterogeneity, recurrent events and multilevel event history models. Practical instructions are also included for using the statistical programs of R, STATA and SPSS, enabling readers to replicate the examples described in the text.

Risk Models and Their Estimation

Risk Models and Their Estimation PDF Author: Stephen G. Kellison
Publisher: ACTEX Publications
ISBN: 1566987709
Category : Business & Economics
Languages : en
Pages : 1150

Get Book Here

Book Description
Much of actuarial science deals with the analysis and management of financial risk. In this text we address the topic of loss models, traditionally called risk theory by actuaries, including the estimation of such models from sample data. The theory of survival models is addressed in other texts, including the ACTEX work entitled Models for Quantifying Risk which might be considered a companion text to this one. In Risk Models and Their Estimation we consider as well the estimation of survival models, in both tabular and parametric form, from sample data. This text is a valuable reference for those preparing for Exam C of the Society of Actuaries and Exam 4 of the Casualty Actuarial Society. A separate solutions' manual with detailed solutions to the text exercises is also available.

Survival Analysis

Survival Analysis PDF Author: John P. Klein
Publisher: Springer Science & Business Media
ISBN: 1475727283
Category : Medical
Languages : en
Pages : 508

Get Book Here

Book Description
Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.

Flexible Parametric Survival Analysis Using Stata

Flexible Parametric Survival Analysis Using Stata PDF Author: Patrick Royston
Publisher: Stata Press
ISBN: 9781597180795
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Through real-world case studies, this book shows how to use Stata to estimate a class of flexible parametric survival models. It discusses the modeling of time-dependent and continuous covariates and looks at how relative survival can be used to measure mortality associated with a particular disease when the cause of death has not been recorded. The book describes simple quantification of differences between any two covariate patterns through calculation of time-dependent hazard ratios, hazard differences, and survival differences.