Author: Mark McHugh
Publisher: Elsevier
ISBN: 0080518176
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
Supercritical Fluid Extraction is a technique in which CO2 is used under extremely high pressure to separate solution (e.g., removing caffeine from coffee). Separations is basic to all process industries and supercritical fluid extraction is a specific type which is receiving a high level of attention. The book will combine basic fundamentals with industrial applications. The second edition has been expanded and updated and includes new chapters on chromatography and food processing. "...this is an excellent book which is both instructive and amusing to read. Its true value is neatly summarised in one of the closing sentences: 'We have supplied you with the guidelines and criteria which you can now apply when considering supercritical fluids for your own needs.'' - Chemistry in Britain, February 1995
Supercritical Fluid Extraction
Author: Mark McHugh
Publisher: Elsevier
ISBN: 0080518176
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
Supercritical Fluid Extraction is a technique in which CO2 is used under extremely high pressure to separate solution (e.g., removing caffeine from coffee). Separations is basic to all process industries and supercritical fluid extraction is a specific type which is receiving a high level of attention. The book will combine basic fundamentals with industrial applications. The second edition has been expanded and updated and includes new chapters on chromatography and food processing. "...this is an excellent book which is both instructive and amusing to read. Its true value is neatly summarised in one of the closing sentences: 'We have supplied you with the guidelines and criteria which you can now apply when considering supercritical fluids for your own needs.'' - Chemistry in Britain, February 1995
Publisher: Elsevier
ISBN: 0080518176
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
Supercritical Fluid Extraction is a technique in which CO2 is used under extremely high pressure to separate solution (e.g., removing caffeine from coffee). Separations is basic to all process industries and supercritical fluid extraction is a specific type which is receiving a high level of attention. The book will combine basic fundamentals with industrial applications. The second edition has been expanded and updated and includes new chapters on chromatography and food processing. "...this is an excellent book which is both instructive and amusing to read. Its true value is neatly summarised in one of the closing sentences: 'We have supplied you with the guidelines and criteria which you can now apply when considering supercritical fluids for your own needs.'' - Chemistry in Britain, February 1995
Supercritical Fluid Extraction
Author: Jason Lindy
Publisher:
ISBN: 9781634633109
Category : Supercritical fluid extraction
Languages : en
Pages : 0
Book Description
The technology of application of fluids in the supercritical state is a viable option and a high quality scientific method for obtaining materials, insulation, and extractions among other situations in which it may be applied yielding a high quality material. Due to its wide range of application, it has been extensively used to investigate different raw materials focusing on obtaining high quality products and applicability in various industrial segments. Its use has been mentioned in several studies as a high-quality and efficient technology for obtaining high-value added products. This book discusses the technology used in supercritical fluid extraction, as well as its applications and limitations.
Publisher:
ISBN: 9781634633109
Category : Supercritical fluid extraction
Languages : en
Pages : 0
Book Description
The technology of application of fluids in the supercritical state is a viable option and a high quality scientific method for obtaining materials, insulation, and extractions among other situations in which it may be applied yielding a high quality material. Due to its wide range of application, it has been extensively used to investigate different raw materials focusing on obtaining high quality products and applicability in various industrial segments. Its use has been mentioned in several studies as a high-quality and efficient technology for obtaining high-value added products. This book discusses the technology used in supercritical fluid extraction, as well as its applications and limitations.
Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds
Author: Jose L. Martinez
Publisher: CRC Press
ISBN: 1420006517
Category : Science
Languages : en
Pages : 420
Book Description
Enhanced concern for the quality and safety of food products, increased preference for natural products, and stricter regulations on the residual level of solvents, all contribute to the growing use of supercritical fluid technology as a primary alternative for the extraction, fractionation, and isolation of active ingredients. As a solvent-free p
Publisher: CRC Press
ISBN: 1420006517
Category : Science
Languages : en
Pages : 420
Book Description
Enhanced concern for the quality and safety of food products, increased preference for natural products, and stricter regulations on the residual level of solvents, all contribute to the growing use of supercritical fluid technology as a primary alternative for the extraction, fractionation, and isolation of active ingredients. As a solvent-free p
Analytical Supercritical Fluid Extraction
Author: Maria D. Luque de Castro
Publisher: Springer Science & Business Media
ISBN: 3642786731
Category : Science
Languages : en
Pages : 332
Book Description
Recent advances in analytical chemistry have turned it into a virtually unrecognizable science compared to a few decades ago, when it lagged behind other sciences and techniques. However, advances in analytical science have been far from universal: while innovations in instrumentation and data acquisition and processing systems have reached unprecedented levels thanks to parallel breakthroughs in computer science and chemo metrics, progress in preliminary operations has been much slower despite their importance to analytical results. Thus, such clear trends in analytical process development as automation and miniaturization have not reached preliminary operations to the same extent, even though this area is pro bably in the greatest need. Improvement in preliminary operations is thus an urgent goal of analytical chemistry on the verge of the twenty first century. Increased R&D endeavours and manufacture of commercially available automatic equipment for implementation of the wide variety of operations that separate the uncollected, unmeasured, untreated sample from the signal measuring step are thus crucial on account of the wide variability of such operations, which precludes development of all-purpose equipment, and the complexity of some, particularly relating to solid samples. Supercritical fluid extraction opens up interesting prospects in this context and is no doubt an effective approach to automatioI1 and mini aturization in the preliminary steps of the analytical process. The dramatic developments achieved in its short life are atypical in many respects.
Publisher: Springer Science & Business Media
ISBN: 3642786731
Category : Science
Languages : en
Pages : 332
Book Description
Recent advances in analytical chemistry have turned it into a virtually unrecognizable science compared to a few decades ago, when it lagged behind other sciences and techniques. However, advances in analytical science have been far from universal: while innovations in instrumentation and data acquisition and processing systems have reached unprecedented levels thanks to parallel breakthroughs in computer science and chemo metrics, progress in preliminary operations has been much slower despite their importance to analytical results. Thus, such clear trends in analytical process development as automation and miniaturization have not reached preliminary operations to the same extent, even though this area is pro bably in the greatest need. Improvement in preliminary operations is thus an urgent goal of analytical chemistry on the verge of the twenty first century. Increased R&D endeavours and manufacture of commercially available automatic equipment for implementation of the wide variety of operations that separate the uncollected, unmeasured, untreated sample from the signal measuring step are thus crucial on account of the wide variability of such operations, which precludes development of all-purpose equipment, and the complexity of some, particularly relating to solid samples. Supercritical fluid extraction opens up interesting prospects in this context and is no doubt an effective approach to automatioI1 and mini aturization in the preliminary steps of the analytical process. The dramatic developments achieved in its short life are atypical in many respects.
Analysis with Supercritical Fluids: Extraction and Chromatography
Author: Bernd Wenclawiak
Publisher: Springer Science & Business Media
ISBN: 3642774741
Category : Science
Languages : en
Pages : 225
Book Description
The use of supercritical fluids in analytical chemistry is still grow ing. More and more analysts are discovering the favorable advan tages for a number of applications. Especially supercritical fluid extraction (SFE) has attracted a lot of interest in recent years due to its simplicity. Supercritical fluid chromatography (SFC) has become better established and the development of this technique has been accelerated by the many applications with capillary col umns which have been published in the literature. At first SFC equipment was based on instruments commonly used for liquid chromatography, and the first commercial in struments were derived from this technology. However, capillary columns can be much more easily interfaced to gas chromatogra phy equipment especially to the detectors commonly used for Oc. Many stationary phases both for packed micro columns and capillary columns have been designed for SFC purposes extending this technology to LC and OC. The most common fluid applied in SFC and SFE is carbon dioxide. The advantages of supercritical CO , such as having dif 2 fusivity like a gas and solvating power depending on temperature and pressure, are also valid for other fluids and modified fluids. Both properties are valuable for sample extraction and extraction selectivity.
Publisher: Springer Science & Business Media
ISBN: 3642774741
Category : Science
Languages : en
Pages : 225
Book Description
The use of supercritical fluids in analytical chemistry is still grow ing. More and more analysts are discovering the favorable advan tages for a number of applications. Especially supercritical fluid extraction (SFE) has attracted a lot of interest in recent years due to its simplicity. Supercritical fluid chromatography (SFC) has become better established and the development of this technique has been accelerated by the many applications with capillary col umns which have been published in the literature. At first SFC equipment was based on instruments commonly used for liquid chromatography, and the first commercial in struments were derived from this technology. However, capillary columns can be much more easily interfaced to gas chromatogra phy equipment especially to the detectors commonly used for Oc. Many stationary phases both for packed micro columns and capillary columns have been designed for SFC purposes extending this technology to LC and OC. The most common fluid applied in SFC and SFE is carbon dioxide. The advantages of supercritical CO , such as having dif 2 fusivity like a gas and solvating power depending on temperature and pressure, are also valid for other fluids and modified fluids. Both properties are valuable for sample extraction and extraction selectivity.
Supercritical Fluid Extraction and its Use in Chromatographic Sample Preparation
Author: S.A. Westwood
Publisher: Springer Science & Business Media
ISBN: 9401121648
Category : Science
Languages : en
Pages : 180
Book Description
by Professor D. E. Games, Mass Spectrometry Research Unit, University College of Swansea Sample preparation can be viewed as occupying a Cinderella role in analytical science. However, the quality of sample preparation plays a key role in high In the past decade, there has been quality analysis and deserves higher stature. considerable interest in the use of supercritical fluid extraction (SFE) as an alternative to conventional procedures for the preparation of samples for ana lysis. The driving force for this development is the need for automated, sim pler, faster, non-destructive and selective methods for extraction, preferably using non-toxic extraction media which are easily disposed of. Utilization of supercritical fluids for extraction fulfils these requirements because of their unique physical chemical properties and usually low toxicity. Selectivity can be achieved by suitable selection of pressure (density), temperature and modi fier conditions which enable solvating power to be varied. The high diffusivity of supercritical fluids provides rapid sample penetration and extraction. Use of fluids with low critical temperatures enables extraction to be conducted under mild thermal conditions ensuring that thermally labile compounds do not decompose. The technique can be used off-line, and the extracts analysed by appropriate techniques, or it can be used on-line, by coupling with a variety of chromatographic techniques. These can then, if necessary, be coupled fur ther with spectroscopic techniques, such as Fourier transform infrared, ultra violet or mass spectrometry, to provide specific identification or structural information.
Publisher: Springer Science & Business Media
ISBN: 9401121648
Category : Science
Languages : en
Pages : 180
Book Description
by Professor D. E. Games, Mass Spectrometry Research Unit, University College of Swansea Sample preparation can be viewed as occupying a Cinderella role in analytical science. However, the quality of sample preparation plays a key role in high In the past decade, there has been quality analysis and deserves higher stature. considerable interest in the use of supercritical fluid extraction (SFE) as an alternative to conventional procedures for the preparation of samples for ana lysis. The driving force for this development is the need for automated, sim pler, faster, non-destructive and selective methods for extraction, preferably using non-toxic extraction media which are easily disposed of. Utilization of supercritical fluids for extraction fulfils these requirements because of their unique physical chemical properties and usually low toxicity. Selectivity can be achieved by suitable selection of pressure (density), temperature and modi fier conditions which enable solvating power to be varied. The high diffusivity of supercritical fluids provides rapid sample penetration and extraction. Use of fluids with low critical temperatures enables extraction to be conducted under mild thermal conditions ensuring that thermally labile compounds do not decompose. The technique can be used off-line, and the extracts analysed by appropriate techniques, or it can be used on-line, by coupling with a variety of chromatographic techniques. These can then, if necessary, be coupled fur ther with spectroscopic techniques, such as Fourier transform infrared, ultra violet or mass spectrometry, to provide specific identification or structural information.
Analytical Supercritical Fluid Extraction Techniques
Author: E.D. Ramsey
Publisher: Springer Science & Business Media
ISBN: 9401149488
Category : Science
Languages : en
Pages : 449
Book Description
During the past decade supercritical fluid extration (SFE) has attracted considerable attention as a sample preparation procedure in analytical chemistry. The successful implementation of this technique can lead to improved sample throughput, more efficient recovery of analytes, cleaner extracts, economic replacement of halogenated solvents and a high level of automation, compared to conventional sample preparation procedures. This book provides an overview of basic principles of SFE as well as in-depth reviews of both on- and off-line SFE methods. The on-line coupling of SFE with both chromatographic and spectroscopics techniques has been the subject of a great deal of research effort and is dealt with in detail. Newer developments, such as off-line SFE of solid and liquid matrices, are starting to attract a great deal of interest, and the coverage of these areas will prove of particular value to the analytical chemist. The international team of authors has illustrated these topics with many `state-of-the-art' applications, and each chapter provides a comprehensive list of references. For the convenience of the reader, an appendix which contains pressure conversion scales and supercritical fluid carbon dioxide density tables appears at the end of the book. The volume's extensive coverage of both on-line and off-line extraction will be particularly useful to analytical chemists, in a wide range of environments, seeking to develop high quality, simple and robust SFE methods.
Publisher: Springer Science & Business Media
ISBN: 9401149488
Category : Science
Languages : en
Pages : 449
Book Description
During the past decade supercritical fluid extration (SFE) has attracted considerable attention as a sample preparation procedure in analytical chemistry. The successful implementation of this technique can lead to improved sample throughput, more efficient recovery of analytes, cleaner extracts, economic replacement of halogenated solvents and a high level of automation, compared to conventional sample preparation procedures. This book provides an overview of basic principles of SFE as well as in-depth reviews of both on- and off-line SFE methods. The on-line coupling of SFE with both chromatographic and spectroscopics techniques has been the subject of a great deal of research effort and is dealt with in detail. Newer developments, such as off-line SFE of solid and liquid matrices, are starting to attract a great deal of interest, and the coverage of these areas will prove of particular value to the analytical chemist. The international team of authors has illustrated these topics with many `state-of-the-art' applications, and each chapter provides a comprehensive list of references. For the convenience of the reader, an appendix which contains pressure conversion scales and supercritical fluid carbon dioxide density tables appears at the end of the book. The volume's extensive coverage of both on-line and off-line extraction will be particularly useful to analytical chemists, in a wide range of environments, seeking to develop high quality, simple and robust SFE methods.
Applications of Supercritical Fluids in Industrial Analysis
Author: J.R. Dean
Publisher: Springer Science & Business Media
ISBN: 940112146X
Category : Science
Languages : en
Pages : 238
Book Description
The continued search for rapid, efficient and cost-effective means of analytical measurement has introduced supercritical fluids into the field of analytical chemistry. Two areas are common: supercritical fluid chroma tography and supercritical fluid extraction. Both seek to exploit the unique properties of a gas at temperatures and pressures above the critical point. The most common supercritical fluid is carbon dioxide, employed because of its low critical temperature (31 °C), inertness, purity, non-toxicity and cheapness. Alternative supercritical fluids are also used and often in conjunction with modifiers. The combined gas-like mass transfer and liquid-like solvating characteristics have been used for improved chroma tographic separation and faster sample preparation. Supercritical fluid chromatography (SFC) is complementary to gas chro matography ( GC) and high performance liquid chromatography (HPLC), providing higher efficiency than HPLC, together with the ability to analyse thermally labile and high molecular weight analytes. Both packed and open tubular columns can be employed, providing the capability to analyse a wide range of sample types. In addition, flame ionization detection can be used, thus providing 'universal' detection.
Publisher: Springer Science & Business Media
ISBN: 940112146X
Category : Science
Languages : en
Pages : 238
Book Description
The continued search for rapid, efficient and cost-effective means of analytical measurement has introduced supercritical fluids into the field of analytical chemistry. Two areas are common: supercritical fluid chroma tography and supercritical fluid extraction. Both seek to exploit the unique properties of a gas at temperatures and pressures above the critical point. The most common supercritical fluid is carbon dioxide, employed because of its low critical temperature (31 °C), inertness, purity, non-toxicity and cheapness. Alternative supercritical fluids are also used and often in conjunction with modifiers. The combined gas-like mass transfer and liquid-like solvating characteristics have been used for improved chroma tographic separation and faster sample preparation. Supercritical fluid chromatography (SFC) is complementary to gas chro matography ( GC) and high performance liquid chromatography (HPLC), providing higher efficiency than HPLC, together with the ability to analyse thermally labile and high molecular weight analytes. Both packed and open tubular columns can be employed, providing the capability to analyse a wide range of sample types. In addition, flame ionization detection can be used, thus providing 'universal' detection.
Supercritical Fluids
Author: E. Kiran
Publisher: Springer Science & Business Media
ISBN: 9401139296
Category : Science
Languages : en
Pages : 602
Book Description
Supercritical fluids are neither gas nor liquid, but can be compressed gradually from low to high density and they are therefore interesting and important as tunable solvents and reaction media in the chemical process industry. By adjusting the density the properties of these fluids can be customised and manipulated for a given process - physical or chemical transformation. Separation and processing using supercritical solvents such as CO2 are currently on-line commercially in the food, essential oils and polymer industries. Many agencies and industries are considering the use of supercritical water for waste remediation. Supercritical fluid chromatography represents another, major analytical application. Significant advances have recently been made in materials processing, ranging from particle formation to the creation of porous materials. The chapters in this book provide tutorial accounts of topical areas centred around: (1) phase equilibria, thermodynamics and equations of state; (2) critical behaviour, crossover effects; (3) transport and interfacial properties; (4) molecular modelling, computer simulation; (5) reactions, spectroscopy; (6) phase separation kinetics; (7) extractions; (8) applications to polymers, pharmaceuticals, natural materials and chromatography; (9) process scale-up.
Publisher: Springer Science & Business Media
ISBN: 9401139296
Category : Science
Languages : en
Pages : 602
Book Description
Supercritical fluids are neither gas nor liquid, but can be compressed gradually from low to high density and they are therefore interesting and important as tunable solvents and reaction media in the chemical process industry. By adjusting the density the properties of these fluids can be customised and manipulated for a given process - physical or chemical transformation. Separation and processing using supercritical solvents such as CO2 are currently on-line commercially in the food, essential oils and polymer industries. Many agencies and industries are considering the use of supercritical water for waste remediation. Supercritical fluid chromatography represents another, major analytical application. Significant advances have recently been made in materials processing, ranging from particle formation to the creation of porous materials. The chapters in this book provide tutorial accounts of topical areas centred around: (1) phase equilibria, thermodynamics and equations of state; (2) critical behaviour, crossover effects; (3) transport and interfacial properties; (4) molecular modelling, computer simulation; (5) reactions, spectroscopy; (6) phase separation kinetics; (7) extractions; (8) applications to polymers, pharmaceuticals, natural materials and chromatography; (9) process scale-up.
Extraction of Natural Products Using Near-Critical Solvents
Author: M.B. King
Publisher: Springer Science & Business Media
ISBN: 9401121389
Category : Science
Languages : en
Pages : 335
Book Description
The aim of this book is to present the current state of the art of extracting natural products with near-critical solvents and to view the possibilities of further extensions of the technique. Relevant background theory is given but does not dominate the book. Carbon dioxide is the near-critical solvent used in most recent applications and inevitably receives prominence. In addition to general descriptions and reviews, the book contains three chapters by indus trial practitioners who describe in detail the operation of their processes and discuss the market for their products. Sections on the design of the pressure vessels and pumps required in these processes and on the acquisition of the data required for design are included. The costing of the processes is also discussed. There is good scope for combining a near-critical extraction step with other process steps in which the properties of near-critical solvents are utilised, for example as a reaction or crystallisation medium and a chapter is devoted to these important aspects. It is hoped that the work will be found to contain a great deal of specific information of use to those already familiar with this field. However the style of presentation and content is such that it will also be useful as an introduction. In particular it will be helpful to those wondering if this form of separation method has anything to offer for them, whether they are engineers, chemists or managers in industry, or in academic or research institutions.
Publisher: Springer Science & Business Media
ISBN: 9401121389
Category : Science
Languages : en
Pages : 335
Book Description
The aim of this book is to present the current state of the art of extracting natural products with near-critical solvents and to view the possibilities of further extensions of the technique. Relevant background theory is given but does not dominate the book. Carbon dioxide is the near-critical solvent used in most recent applications and inevitably receives prominence. In addition to general descriptions and reviews, the book contains three chapters by indus trial practitioners who describe in detail the operation of their processes and discuss the market for their products. Sections on the design of the pressure vessels and pumps required in these processes and on the acquisition of the data required for design are included. The costing of the processes is also discussed. There is good scope for combining a near-critical extraction step with other process steps in which the properties of near-critical solvents are utilised, for example as a reaction or crystallisation medium and a chapter is devoted to these important aspects. It is hoped that the work will be found to contain a great deal of specific information of use to those already familiar with this field. However the style of presentation and content is such that it will also be useful as an introduction. In particular it will be helpful to those wondering if this form of separation method has anything to offer for them, whether they are engineers, chemists or managers in industry, or in academic or research institutions.