Sub-millimeter Wave Wideband CMOS Receivers

Sub-millimeter Wave Wideband CMOS Receivers PDF Author: Ibukunoluwa Adedapo Momson
Publisher:
ISBN:
Category : Radio
Languages : en
Pages :

Get Book Here

Book Description
The increasing bandwidth of silicon integrated circuits technology has enabled generation of carrier signals at sub-millimeter wave frequencies (greater than 300 GHz), where the narrow fractional bandwidth of carriers translates to large absolute coherence bandwidths. These high frequency carriers and the associated wide coherence bandwidths can make possible high data rate wireless and dielectric waveguide communications. By combining multiple sub-millimeter wave carrier bands (frequency division multiplexing), it is possible to use this portion of the spectrum for even higher bandwidth communication. The transceivers for these applications require only electronic components fabricated in conventional silicon technologies, thus bypassing the complexity of alternative high data rate communication technologies such as photonics that require integration of optical lasers fabricated using III-V technologies. However, implementing a free-space wireless link with sub-millimeter wave carriers is subject to a limited capacity. The transmitted signal in the ideal case experiences attenuation that is inversely proportional to the square of the communication distance. Furthermore, despite the improvement in cut-off frequencies of modern devices, realizing fundamental power gain from active devices at sub-millimeter wave frequencies to provide sufficient transmitted power especially with good power efficiency is still challenging in current silicon technologies. The receiver sensitivity also degrades with operating frequency. These factors ultimately limit the capacity of a sub-millimeter wave wireless communications link because they limit the realizable signal-to-noise ratio of the signal at the receiver output. One way to mitigate these limitations, like in optical fiber communications, is to use a waveguide channel to confine and propagate the modulated carriers to increase the power incident to a receiver. This makes sub-millimeter wave carriers notable candidates for wireline applications. The 315-GHz fully integrated minimum shift keying receiver (MSK) presented in this work can be used for up to 10-Gbps wireline communications at a sensitivity of -21 dBm, requiring 195 mW of power. The receiver tracks the input carrier frequency for synchronization using a phase locked loop receiver architecture. The operating frequency of 315 GHz is the highest for an MSK receiver and for a phase locked loop based receiver that tracks the input signal frequency. To improve sensitivity of receivers, minimizing the receiver noise figure is essential. A 425-to-25 GHz integrated down-converting front-end also presented in this work achieves a noise figure of 17 dB which is the lowest reported for silicon NMOS and SiGe HBT receivers operating above 400 GHz. This is 18 dB lower than the previous minimum noise figure reported around these frequencies. The down-converter is based on a second-order subharmonic push-push mixer and incorporates a hybrid architecture to suppress second harmonic emissions of the local oscillator signal. The down-converter consumes 190 mW of power. This work also demonstrates that a passive switching mixer can have an available output noise power spectral density less than kT, which can make its noise figure less than its conversion loss.

Sub-millimeter Wave Wideband CMOS Receivers

Sub-millimeter Wave Wideband CMOS Receivers PDF Author: Ibukunoluwa Adedapo Momson
Publisher:
ISBN:
Category : Radio
Languages : en
Pages :

Get Book Here

Book Description
The increasing bandwidth of silicon integrated circuits technology has enabled generation of carrier signals at sub-millimeter wave frequencies (greater than 300 GHz), where the narrow fractional bandwidth of carriers translates to large absolute coherence bandwidths. These high frequency carriers and the associated wide coherence bandwidths can make possible high data rate wireless and dielectric waveguide communications. By combining multiple sub-millimeter wave carrier bands (frequency division multiplexing), it is possible to use this portion of the spectrum for even higher bandwidth communication. The transceivers for these applications require only electronic components fabricated in conventional silicon technologies, thus bypassing the complexity of alternative high data rate communication technologies such as photonics that require integration of optical lasers fabricated using III-V technologies. However, implementing a free-space wireless link with sub-millimeter wave carriers is subject to a limited capacity. The transmitted signal in the ideal case experiences attenuation that is inversely proportional to the square of the communication distance. Furthermore, despite the improvement in cut-off frequencies of modern devices, realizing fundamental power gain from active devices at sub-millimeter wave frequencies to provide sufficient transmitted power especially with good power efficiency is still challenging in current silicon technologies. The receiver sensitivity also degrades with operating frequency. These factors ultimately limit the capacity of a sub-millimeter wave wireless communications link because they limit the realizable signal-to-noise ratio of the signal at the receiver output. One way to mitigate these limitations, like in optical fiber communications, is to use a waveguide channel to confine and propagate the modulated carriers to increase the power incident to a receiver. This makes sub-millimeter wave carriers notable candidates for wireline applications. The 315-GHz fully integrated minimum shift keying receiver (MSK) presented in this work can be used for up to 10-Gbps wireline communications at a sensitivity of -21 dBm, requiring 195 mW of power. The receiver tracks the input carrier frequency for synchronization using a phase locked loop receiver architecture. The operating frequency of 315 GHz is the highest for an MSK receiver and for a phase locked loop based receiver that tracks the input signal frequency. To improve sensitivity of receivers, minimizing the receiver noise figure is essential. A 425-to-25 GHz integrated down-converting front-end also presented in this work achieves a noise figure of 17 dB which is the lowest reported for silicon NMOS and SiGe HBT receivers operating above 400 GHz. This is 18 dB lower than the previous minimum noise figure reported around these frequencies. The down-converter is based on a second-order subharmonic push-push mixer and incorporates a hybrid architecture to suppress second harmonic emissions of the local oscillator signal. The down-converter consumes 190 mW of power. This work also demonstrates that a passive switching mixer can have an available output noise power spectral density less than kT, which can make its noise figure less than its conversion loss.

Wideband CMOS Receivers

Wideband CMOS Receivers PDF Author: Miguel D. Fernandes
Publisher: Springer
ISBN: 3319189204
Category : Technology & Engineering
Languages : en
Pages : 115

Get Book Here

Book Description
This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology. The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

Millimeter-wave Wideband MSK Receiver and Transmitter in CMOS

Millimeter-wave Wideband MSK Receiver and Transmitter in CMOS PDF Author: Shenggang Dong
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 0

Get Book Here

Book Description
The sub-terahertz portion of the electromagnetic spectrum can provide a large bandwidth for both wireless communication and wireline communication using dielectric waveguides. To fully exploit the bandwidth, the communication systems inevitably require frequency division multiplexing. Since integrating a highly frequency-selective multiplexer and a de-multiplexer is challenging at these frequencies, use of MSK (Minimum Shift Keying) modulation with reduced out-of-band emission is a potential approach to alleviate this technical challenge. Furthermore, MSK is a constant envelope modulation and allows more power efficient operation of transmitters. This is particularly important at sub-terahertz frequencies, where the power efficiency of circuits is low. Lastly, MSK signals can be demodulated using a phase locked loop (PLL) based receiver that tracks the carrier frequency of signals incident to a receiver, which greatly relaxes the frequency synchronization requirements in both transmitter and receiver. PLL-based receivers are also simple to implement. Although MSK signals have such merits for sub-THz communication, the previously reported carrier frequency of Gilbert-mixer-based MSK transmitters is lower than 60 GHz and data rate lower than 2 Gbps. The maximum data rate of PLL-based receivers is 10’s of Mbps. Increasing the data rate of PLL-based receiver and generation of high-data rate MSK signals are the main topics of this dissertation. First, a 180-GHz MSK receiver using a phase-locked loop (PLL), which self-synchronizes carrier frequency is demonstrated. The mixer first receiver is fabricated in a 65-nm CMOS process. A double balanced anti-parallel-diode-pair sub-harmonic mixer performs the phase detection, reducing the frequency of LO by half. Tunable zeros realized by series inductors are used to improve the stability and to increase the data rate handling capability. Without external LO synchronization, the receiver demodulates MSK signals at 10 Gbps with a bit error rate (BER) of

Near Millimeter Wave CMOS Receiver and Transmitter

Near Millimeter Wave CMOS Receiver and Transmitter PDF Author: Qian Zhong
Publisher:
ISBN:
Category : Metal oxide semiconductors, Complementary
Languages : en
Pages :

Get Book Here

Book Description
Electromagnetic waves in the millimeter (mm) and sub-millimeter wave (sub-mm) frequency ranges have caught a lot of attention. The waves at these frequencies can interact with gas molecules possessing dipole moments and change their rotational states. This phenomenon can be utilized for fast scan rotational spectroscopy to detect gas molecules and measure their concentrations. Rotational spectrometers have a wide range of applications including indoor air quality monitoring, detection of harmful gas leaks, breath analyses for monitoring bodily conditions and many others. At the mm and sub-mm wave frequencies, a large bandwidth is available for extremely high data rate communication. Communication over a dielectric waveguide at these frequencies with a loss less than 10dB/m has been proposed to mitigate the complexity of communication over copper wires as well as the integration challenges for optical communication that are being developed to meet the ever-increasing bandwidth demand. The advances of complementary metal-oxide-semiconductor (CMOS) technology have enabled the implementation of mm-wave and sub-mm wave frequency circuits with reduced cost and increased system integration and complexity. A receiver with a radio frequency front-end bandwidth of 95 GHz and noise figure of 13.9 -19 dB for a rotational spectrometer is demonstrated in 65-nm CMOS. In addition, a 300-GHz QPSK transmitter with a 30-Gbps data rate is demonstrated that consumes 180mW for dielectric waveguide communication. The system level tradeoff of a receiver for rotational spectroscopy is first analyzed with a focus on the noise mechanism. A detailed signal-noise interaction derivation due to a 2nd order non-linearity is presented and signal to noise ratio degradation is shown for different modulation scenarios. A receiver front-end using a broadband antenna backed by a phase compensated artificial magnetic conductor reflector, a floating body antiparallel diode pair as the mixing device and a multi-mode isolated broadband hybrid is demonstrated. The receiver also includes an on-chip LO generator using frequency multipliers and capacitive neutralized power amplifiers, an IF cascode low noise amplifier and a baseband power detector. The receiver exhibits a responsivity of 400-1200 kV/W and noise equivalent power of 0.4 to 1.2 pW/√Hz at 225 to 280 GHz. Detection of Ethanol, Propionitrile (EtCN), Acetonitrile (CH3CN) and Acetone in a mixture is demonstrated using the receiver in a rotational spectroscopy setup. This is the first demonstration that a CMOS receiver can be used for rotational spectroscopy and that a CMOS integrated circuit can support an existing application at frequencies above 200 GHz. A heterodyne transmitter with a current mode logic modulator, a multi-stage constant gain and group delay wideband data buffer using coupled resonators, a double balance passive up-conversion mixer using a Marchand balun which acts as built-in LO spur traps, and a quadrature oscillator with quadrature calibration are demonstrated. The transmitter generates the required RF power for the system of -6 dBm and supports a maximum data rate of 30Gbps while consuming 180mW of power resulting in an energy efficiency of 6 pJ/bit. The single channel data rate is almost 2X higher than that of the previously reported CMOS QPSK transmitter and the energy efficiency is among the highest of CMOS QPSK transmitters operating at the similar frequency range.

Cmos Millimeter-wave Integrated Circuits For Next Generation Wireless Communication Systems

Cmos Millimeter-wave Integrated Circuits For Next Generation Wireless Communication Systems PDF Author: Yeo Kiat Seng
Publisher: World Scientific
ISBN: 9811202621
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
This book addresses in-depth technical issues, limitations, considerations and challenges facing millimeter-wave (MMW) integrated circuit and system designers in designing MMW wireless communication systems from the complementary metal-oxide semiconductor (CMOS) perspective. It offers both a comprehensive explanation of fundamental theories and a broad coverage of MMW integrated circuits and systems.CMOS Millimeter-Wave Integrated Circuits for Next Generation Wireless Communication Systems is an excellent reference for faculty, researchers and students working in electrical and electronic engineering, wireless communication, integrated circuit design and circuits and systems. While primarily written for upper-level undergraduate courses, it is also an excellent introduction to the subject for instructors, graduate students, researchers, integrated circuit designers and practicing engineers. Advanced readers could also benefit from this book as it includes many recent state-of-the-art MMW circuits.

Power and Area Optimization Techniques for Ultra-wideband Millimeter-wave CMOS Transceivers

Power and Area Optimization Techniques for Ultra-wideband Millimeter-wave CMOS Transceivers PDF Author: Venumadhav Bhagavatula
Publisher:
ISBN:
Category :
Languages : en
Pages : 127

Get Book Here

Book Description
Over the past decade, opportunities for utilizing the broadband spectrum available at millimeter-wave (mm-wave) frequencies has motivated research on both short and long-range, highly-integrated complementary metal oxide semiconductor (CMOS) transceivers. Prototype mm-wave CMOS transceivers have been demonstrated for application in high-speed data transfer (57-64 GHz), wireless back-haul (71-76 GHz), automotive radar (77GHz) and medical imaging (90 GHz) systems. However, in spite of promising results, large scale deployment of mm-wave CMOS transceivers in portable and hand-held electronics is currently hindered by front-end power-consumptions on the order of several watts. Moreover, as a first order approximation, power consumption is directly proportional to system bandwidth. Therefore, as the bandwidth requirements of systems increase, the challenge with on-chip power consumption will become increasingly difficult to solve. In this dissertation, techniques for optimizing the power and area of ultra-wideband millimeter-wave transceivers are described. This work resulted in the fabrication of three mm-wave integrated circuits (IC), all of which were realized in a 6-metal layer 40-nm CMOS process. The first IC is a multi-stage transformer-feedback based 11-to-13 GHz direct-conversion receiver. The device achieves a 16% fractional-bandwidth, a peak power-gain of 27.6dB, and noise-figure of 5.3dB while consuming 28.8mW from a 0.9V supply. Second, a compact 24-54GHz 2-stage bandpass distributed amplifier utilizing mirror-symmetric Norton transformations to reduce inductor component values allowing efficient layout to occupy an active area of 0.15mm2. The device has a 77% fractional-bandwidth, an overall gain of 6.3dB, a minimum in-band IIP3 of 11dBm, while consuming 34mA from a 1V supply. The third, and the IC which includes the most integration among the three, is an ultra-broadband single-element heterodyne receiver intended for use in low-power phased-array systems. The receiver maintains 17GHz of bandwidth from the mm-wave front end, through a high-IF stage, and to the baseband output. The device occupies 1.2mm2 and exploits properties of gain-equalized transformers throughout the signal path to achieve an overall 17GHz bandwidth 20dB gain with a flat in-band response, 7.8dB DSB NF, and a P[subscript-1dB] of -24dBm, while consuming 104mW off a 1.1V supply.

Design and Modeling of Millimeter-wave CMOS Circuits for Wireless Transceivers

Design and Modeling of Millimeter-wave CMOS Circuits for Wireless Transceivers PDF Author: Ivan Chee-Hong Lai
Publisher: Springer Science & Business Media
ISBN: 1402069995
Category : Technology & Engineering
Languages : en
Pages : 185

Get Book Here

Book Description
Design and Modeling of Millimeter-wave CMOS Circuits for Wireless Transceivers describes in detail some of the interesting developments in CMOS millimetre-wave circuit design. This includes the re-emergence of the slow-wave technique used on passive devices, the license-free 60GHz band circuit blocks and a 76GHz voltage-controlled oscillator suitable for vehicular radar applications. All circuit solutions described are suitable for digital CMOS technology. Digital CMOS technology developments driven by Moore’s law make it an inevitable solution for low cost and high volume products in the marketplace. Explosion of the consumer wireless applications further makes this subject a hot topic of the day. The book begins with a brief history of millimetre-wave research and how the silicon transistor is born. Originally meant for different purposes, the two technologies converged and found its way into advanced chip designs. The second part of the book describes the most important passive devices used in millimetre-wave CMOS circuits. Part three uses these passive devices and builds circuit blocks for the wireless transceiver. The book completes with a comprehensive list of references for further readings. Design and Modeling of Millimeter-wave CMOS Circuits for Wireless Transceivers is useful to show the analogue IC designer the issues involved in making the leap to millimetre-wave circuit designs. The graduate student and researcher can also use it as a starting point to understand the subject or proceed to innovative from the works described herein.

Design of Wideband Millimeter-Wave Beamformers and Transceivers in Advanced CMOS SOI Technology

Design of Wideband Millimeter-Wave Beamformers and Transceivers in Advanced CMOS SOI Technology PDF Author: Li Gao
Publisher:
ISBN:
Category :
Languages : en
Pages : 179

Get Book Here

Book Description
With the development of wireless communications, high data rate is becoming essential since it not only augments the current wireless systems but also enables many emerging applications. In order to achieve multi-gigabit-per-second data rates, the fifth generation communication system (5G) is moving forward to the millimeter-wave band, such as 24-29 GHz and 37-42 GHz. Since the frequency is more than 10 times than the current communication protocols, the wavelength is 10 times smaller, which makes the transmission line effects more notable and increases the design complexity. Moreover, the path loss is much larger and therefore a higher output power or antenna EIRP (effective isotropic radiated power) is required to overcome this loss. Previous millimeter-wave 5G research focused on narrow band, such as 28 GHz and 39 GHz. But if a single system can be wideband and include all of these bands, the simultaneous data rate can be increased and the system cost can be reduced. The research projects in this dissertation, in consequence, focus on different wideband RF ICs, and include power amplifiers (PA), low noise amplifiers (LNA), wideband phased-array receivers with high single-sideband rejection, wideband IQ receivers and wideband front-end circuits including phase-shifters and variable gain amplifiers. All of these circuits were done in advanced CMOS SOI technologies. The thesis concludes with a list of future work to be done in this area.

Digitally Assisted, Fully Integrated, Wideband Transmitters for High-Speed Millimeter-Wave Wireless Communication Links

Digitally Assisted, Fully Integrated, Wideband Transmitters for High-Speed Millimeter-Wave Wireless Communication Links PDF Author: David del Rio
Publisher: Springer
ISBN: 3319932810
Category : Technology & Engineering
Languages : en
Pages : 255

Get Book Here

Book Description
This book presents design methods and considerations for digitally-assisted wideband millimeter-wave transmitters. It addresses comprehensively both RF design and digital implementation simultaneously, in order to design energy- and cost-efficient high-performance transmitters for mm-wave high-speed communications. It covers the complete design flow, from link budget assessment to the transistor-level design of different RF front-end blocks, such as mixers and power amplifiers, presenting different alternatives and discussing the existing trade-offs. The authors also analyze the effect of the imperfections of these blocks in the overall performance, while describing techniques to correct and compensate for them digitally. Well-known techniques are revisited, and some new ones are described, giving examples of their applications and proving them in real integrated circuits.

Millimeter-Wave Low Noise Amplifiers

Millimeter-Wave Low Noise Amplifiers PDF Author: Mladen Božanić
Publisher: Springer
ISBN: 3319690205
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
This book is the first standalone book that combines research into low-noise amplifiers (LNAs) with research into millimeter-wave circuits. In compiling this book, the authors have set two research objectives. The first is to bring together the research context behind millimeter-wave circuit operation and the theory of low-noise amplification. The second is to present new research in this multi-disciplinary field by dividing the common LNA configurations and typical specifications into subsystems, which are then optimized separately to suggest improvements in the current state-of-the-art designs. To achieve the second research objective, the state-of-the-art LNA configurations are discussed and the weaknesses of state-of the art configurations are considered, thus identifying research gaps. Such research gaps, among others, point towards optimization – at a systems and microelectronics level. Optimization topics include the influence of short wavelength, layout and crosstalk on LNA performance. Advanced fabrication technologies used to decrease the parasitics of passive and active devices are also explored, together with packaging technologies such as silicon-on-chip and silicon-on-package, which are proposed as alternatives to traditional IC implementation. This research outcome builds through innovation. Innovative ideas for LNA construction are explored, and alternative design methodologies are deployed, including LNA/antenna co-design or utilization of the electronic design automation in the research flow. The book also offers the authors’ proposal for streamlined automated LNA design flow, which focuses on LNA as a collection of highly optimized subsystems.