Studying Turbulent Thermal Convection Using Shell Models

Studying Turbulent Thermal Convection Using Shell Models PDF Author: Wai Chi Cheng
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 160

Get Book Here

Book Description

Studying Turbulent Thermal Convection Using Shell Models

Studying Turbulent Thermal Convection Using Shell Models PDF Author: Wai Chi Cheng
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 160

Get Book Here

Book Description


Scaling of Heat Transport and Reynolds Number in a Shell Model of Homogeneous Turbulent Convection

Scaling of Heat Transport and Reynolds Number in a Shell Model of Homogeneous Turbulent Convection PDF Author: Tze Cheung Ko
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 78

Get Book Here

Book Description


Physics Of Buoyant Flows: From Instabilities To Turbulence

Physics Of Buoyant Flows: From Instabilities To Turbulence PDF Author: Mahendra Kumar Verma
Publisher: World Scientific
ISBN: 9813237813
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
Gravity pervades the whole universe; hence buoyancy drives fluids everywhere including those in the atmospheres and interiors of planets and stars. Prime examples of such flows are mantle convection, atmospheric flows, solar convection, dynamo process, heat exchangers, airships and hot air balloons. In this book we present fundamentals and applications of thermal convection and stratified flows.Buoyancy brings in extremely rich phenomena including waves and instabilities, patterns, chaos, and turbulence. In this book we present these topics in a systematic manner. First we present a unified treatment of linear theory that yields waves and thermal instability for stably and unstably-stratified flows respectively. We extend this analysis to include rotation and magnetic field. We also describe nonlinear saturation and pattern formation in Rayleigh-Bénard convection.The second half of the book is dedicated to buoyancy-driven turbulence, both in stably-stratified flow and in thermal convection. We describe the spectral theory including energy flux and show that the thermally-driven turbulence is similar to hydrodynamic turbulence. We also describe large-scale quantities like Reynolds and Nusselt numbers, flow anisotropy, and the dynamics of flow structures, namely flow reversals. Thus, this book presents all the major aspects of the buoyancy-driven flows in a coherent manner that would appeal to advanced graduate students and researchers.

Studies of Thermal Convection in a Rotating Cylinder with Some Implications for Large-Scale Atmospheric Motions

Studies of Thermal Convection in a Rotating Cylinder with Some Implications for Large-Scale Atmospheric Motions PDF Author: Dave Fultz
Publisher: Springer
ISBN: 1940033373
Category : Science
Languages : en
Pages : 110

Get Book Here

Book Description
The objects of the American Meteorological Society are "the development and dissemination of knowledge of meteorology in all its phases and applications, and the advancement of its professional ideals." The organization of the Society took place in affiliation with the American Association for the Advancement of Science at Saint Louis, Missouri, December 29, 1919, and its incorporation, at Washington, D. C., January 21, 1920. The work of the Society is carried on by the Bulletin, the Journal, and Meteorological Monographs, by papers and discussions at meetings of the Society, through the offices of the Secretary and the Executive Secretary, and by correspondence. All of the Americas are represented in the membership of the Society as well as many foreign countries.

Advances in Turbulence VII

Advances in Turbulence VII PDF Author: Uriel Frisch
Publisher: Springer Science & Business Media
ISBN: 9401151180
Category : Science
Languages : en
Pages : 630

Get Book Here

Book Description
Advances in Turbulence VII contains an overview of the state of turbulence research with some bias towards work done in Europe. It represents an almost complete collection of the invited and contributed papers delivered at the Seventh European Turbulence Conference, sponsored by EUROMECH and ERCOFTAC and organized by the Observatoire de la Côte d'Azur. New high-Reynolds number experiments combined with new techniques of imaging, non-intrusive probing, processing and simulation provide high-quality data which put significant constraints on possible theories. For the first time, it has been shown, for a class of passive scalar problems, why dimensional analysis sometimes gives the wrong answers and how anomalous intermittency corrections can be calculated from first principles. The volume is thus geared towards specialists in the area of flow turbulence who could not attend the conference as well as anybody interested in this rapidly moving field.

Experimental and Numerical Studies of Mechanically- and Convectively-Driven Turbulence in Planetary Interiors

Experimental and Numerical Studies of Mechanically- and Convectively-Driven Turbulence in Planetary Interiors PDF Author: Alexander Michael Grannan
Publisher:
ISBN:
Category :
Languages : en
Pages : 382

Get Book Here

Book Description
The energy for driving turbulent flows in planetary fluid layers comes from a combination of thermocompositional sources and the motion of the boundary in contact with the fluid through mechanisms like precessional, tidal, and librational forcing. Characterizing the resulting turbulent fluid motions are necessary for understanding many aspects of the planet's dynamics and evolution including the generation of magnetic fields in the electrically conducting fluid layers and dissipation in the oceans. Although such flows are strongly inertial they are also strongly influenced by the Coriolis force whose source is in the rotation of the body and tends to constrain the inertial effects and provide support for fluid instabilities that might in-turn generate turbulence. Furthermore, the magnetic fields generated by the electrically conducting fluids act back on the fluid through the Lorentz force that also tends to constrain the flow. The goal of this dissertation is to investigate the characteristics of turbulent flows under the influence of mechanical, convective, rotational and magnetic forcing. In order to investigate the response of the fluid to mechanical forcing, I have modified a unique set of laboratory experiments that allows me to quantify the generation of turbulence driven by the periodic oscillations of the fluid containing boundary through tides and libration. These laboratory experiments replicate the fundamental ingredients found in planetary environments and are necessary for the excitation of instabilities that drive the turbulent fluid motions. For librational forcing, a rigid ellipsoidal container and ellipsoidal shell of isothermal unstratified fluid is made to rotate with a superimposed oscillation while, for tidal forcing, an elastic ellipsoidal container of isothermal unstratified fluid is made to rotate while an independently rotating perturbance also flexes the elastic container. By varying the strength and frequencies of these oscillations the characteristics of the resulting turbulence are investigated using meridional views to identify the dominate modes and spatial location of the turbulence. For the first time, measurements of the velocity in the equatorial plane are coupled with high resolution numerical simulations of the full flow field in identical geometry to characterize the instability mechanism, energy deposited into the fluid layer, and long-term evolution of the flow. The velocities determined through laboratory and numerical simulations when extrapolated to planets allow me to argue that that the dynamics of mechanical forcing in low viscosity fluids may an important role as new and potentially large source of dissipation in planetary interiors. To study convective forcing, I have modified and performed a set of rotating and non-rotating hydrodynamic convection experiments using water as well as rotating and non-rotating magnetohydrodynamic convection in gallium. These studies are performed in a cylindrical geometry representing a model of high latitude planetary core style convection wherein the axis of rotation and gravity are aligned. For the studies using water, the steady columns that are characteristic of rotating convection and present in the dynamo models are likely to destabilize at the more extreme planetary parameters giving way to transitions to more complex styles of rotating turbulent flow. In the studies of liquid metal where the viscosity is lower, the onset of rotating convection occurs through oscillatory columnar convection well below the onset of steady columns. Such oscillatory modes are not represented at the parameters used by current dynamo models. Furthermore a suite of laboratory experiments shows that the imposition of rotational forces and magnetic forces both separately and together generate zeroeth order flow transitions that change the fundamental convective modes and heat transfer. Such regimes are more easily accessible to laboratory experiments then to numerical simulations but demonstrate the need for a new generation of dynamo simulations capable of including the fundamental properties of liquid metals as are relevant for understanding the dynamics of planetary interiors.

Solar-Terrestrial Relations and Physics of Earthquake Precursors

Solar-Terrestrial Relations and Physics of Earthquake Precursors PDF Author: Alexei Dmitriev
Publisher: Springer Nature
ISBN: 3031502485
Category : Science
Languages : en
Pages : 301

Get Book Here

Book Description
This book contains the papers selected by the Scientific Committee and represented at the XIII International Conference "Solar-Terrestrial Relations and Physics of Earthquake Precursors", which was hold at the Institute of Cosmophysical Research and Radio Wave Propagation, Far Eastern Branch of the Russian Academy of Sciences, Kamchatka. The papers describe the investigation results in the fields of atmosphere, ionosphere and magnetosphere physics. Mechanisms of transformation of solar wind energy into the energy of magnetospheric-ionospheric processes, effects of the processes in the Earth core on the lower and upper atmosphere, seismo-electromagnetic, seismo-electric and seismo-acoustic effects at different frequency ranges in the Earth crust, atmosphere and ionosphere are under consideration. Modern methods for geophysical data collection, processing, transfer and exchange as well as organisation issues of seismic activity monitoring are presented. The Conference "Solar-Terrestrial Relations and Physics of Earthquake Precursors" has 25 years of history. Scientists from Russia, Japan, Hungary, China, India, USA and other countries participate in it. In a traditional way, the Conference includes three sections: atmosphere physics, geophysical fields and their interaction, physics of earthquake precursors.

Applied mechanics reviews

Applied mechanics reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400

Get Book Here

Book Description


Advances in Turbulence XII

Advances in Turbulence XII PDF Author: Bruno Eckhardt
Publisher: Springer Science & Business Media
ISBN: 3642030858
Category : Science
Languages : en
Pages : 973

Get Book Here

Book Description
This volume comprises the communications presented at the EUROMECH European Turbulence Conference ETC12, held in Marburg in September 2009. The topics covered by the meeting include: Acoustics of turbulent flows, Atmospheric turbulence, Control of turbulent flows, Geophysical and astrophysical turbulence, Instability and transition, Intermittency and scaling, Large eddy simulation and related techniques, Lagrangian aspects, MHD turbulence, Reacting and compressible turbulence, Transport and mixing, Turbulence in multiphase and non-Newtonian flows, Vortex dynamics and structure, formation, Wall bounded flows.

Energy Transfers in Fluid Flows

Energy Transfers in Fluid Flows PDF Author: Mahendra K. Verma
Publisher: Cambridge University Press
ISBN: 1108226108
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
An up-to-date comprehensive text useful for graduate students and academic researchers in the field of energy transfers in fluid flows. The initial part of the text covers discussion on energy transfer formalism in hydrodynamics and the latter part covers applications including passive scalar, buoyancy driven flows, magnetohydrodynamic (MHD), dynamo, rotating flows and compressible flows. Energy transfers among large-scale modes play a critical role in nonlinear instabilities and pattern formation and is discussed comprehensively in the chapter on buoyancy-driven flows. It derives formulae to compute Kolmogorov's energy flux, shell-to-shell energy transfers and locality. The book discusses the concept of energy transfer formalism which helps in calculating anisotropic turbulence.