Study of Non-ideal Effects on Shock Wave Propagation

Study of Non-ideal Effects on Shock Wave Propagation PDF Author: Cory Kinney
Publisher:
ISBN:
Category :
Languages : en
Pages : 15

Get Book Here

Book Description
Shock tube experiments provide insightful data on combustion, emissions, and ablation characterization for a wide variety of defense and energy sector research topics. Accurate characterization of shock tube facilities is essential to verifying the accuracy of research data. Non-ideal effects, such as boundary layer growth, introduce uncertainty into pressure and temperature conditions, the primary independent variables of interest for shock tube research results. The effect of boundary layer growth on shock tube experiments was investigated by conducting simulations for University of Central Florida’s two geometrically different shock tube using StanShock, a quasi-one-dimensional, reacting, compressible flow solver. The characteristic quantities considered for non-ideal effects and their impact on experiments is the post-reflected-shock pressure rise, dp*/dt, and the incident shock wave attenuation, which are calculated from simulated pressure data and developed into correlations for shock tube characterization and experiment planning.