Studies of Fragment Emission in Light-ion-induced Nuclear Reactions

Studies of Fragment Emission in Light-ion-induced Nuclear Reactions PDF Author: Erin Renshaw Foxford
Publisher:
ISBN:
Category :
Languages : en
Pages : 330

Get Book Here

Book Description

Studies of Fragment Emission in Light-ion-induced Nuclear Reactions

Studies of Fragment Emission in Light-ion-induced Nuclear Reactions PDF Author: Erin Renshaw Foxford
Publisher:
ISBN:
Category :
Languages : en
Pages : 330

Get Book Here

Book Description


Fragmentation in Light-ion-induced Nuclear Reactions

Fragmentation in Light-ion-induced Nuclear Reactions PDF Author: Sherry J. Yennello
Publisher:
ISBN:
Category : Nuclear reactions
Languages : en
Pages : 310

Get Book Here

Book Description


Studies of Complex Fragment Emission in Heavy Ion Reactions

Studies of Complex Fragment Emission in Heavy Ion Reactions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 60

Get Book Here

Book Description
Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production.

Studies of Complex Fragment Emission in Heavy Ion Reactions. Progress Report, January 1, 1993--September 1, 1995

Studies of Complex Fragment Emission in Heavy Ion Reactions. Progress Report, January 1, 1993--September 1, 1995 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This work involves the study of low and intermediate energy heavy-ion nuclear reactions. This work has two foci. First, the authors desired to learn about the properties of both nuclei and nuclear matter under abnormal conditions. Their efforts towards this end run abreast of those for their second focus which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because their experimental laboratory for studying nuclear properties is a dynamic one. Their task is to answer the questions of how nuclear and nuclear matter properties are reflected in the dynamics of the reactions. The second objective also has great intrinsic value in that they can anticipate improving upon their understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. The program has been: to study the dynamics of fusion reactions, specifically the dynamics of energy, mass, and angular momentum deposition. This work includes reactions near the Coulomb barrier, where fusion dominates the reaction cross section as well as higher energies where incomplete fusion reactions are the primary reactions. This includes the dynamics of fission, still the premier example of collective nuclear motion, as a function of excitation, spin, mass, and mass asymmetry. The authors push these kinds of studies into the intermediate energy domain, and where novel reaction scenarios are predicted. They have studied very central and peripheral collisions between very massive nuclei, and simplified projectile fragmentation reactions utilizing medium to light mass projectiles. The study of central collisions has shown us the importance of collective expansion. The study of peripheral collisions between very heavy nuclei has demonstrated the importance of dynamical production of fragments from the neck region.

Studies of Complex Fragment Emission in Heavy Ion Reactions. Progress Report, January 1, 1993--September 15, 1993

Studies of Complex Fragment Emission in Heavy Ion Reactions. Progress Report, January 1, 1993--September 15, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 42

Get Book Here

Book Description
The study of intermediate-energy heavy-ion nuclear reactions is reported. This work has two foci: the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities and the study of the relevant reaction mechanisms. Nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. The program has the following objectives: to study energy, mass, and angular momentum deposition by studying incomplete fusion reactions; to gain confidence in the understanding of how highly excited systems decompose by studying all emissions from the highly excited systems; to push these kinds of studies into the intermediate energy domain (where intermediate mass fragment emission is not improbable) with excitation function studies; and to learn about the dynamics of the decays using particle-particle correlations. The last effort focuses on simple systems, where definitive statements are possible. These avenues of research share a common theme, large complex fragment production. It is this feature, more than any other, which distinguishes the intermediate energy domain.

Studies of Complex Fragment Emission in Heavy Ion Reactions. Progress Report, January 1, 1990--August 5, 1992

Studies of Complex Fragment Emission in Heavy Ion Reactions. Progress Report, January 1, 1990--August 5, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 60

Get Book Here

Book Description
Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production.

Dissipative Nuclear Reaction in Low Energy Light Heavy Ion Collision

Dissipative Nuclear Reaction in Low Energy Light Heavy Ion Collision PDF Author: Aparajita Dey
Publisher: LAP Lambert Academic Publishing
ISBN: 9783838386218
Category :
Languages : en
Pages : 176

Get Book Here

Book Description
The dissipative nuclear reaction mechanism in low energy light heavy-ion collisions have been studied. Inclusive energy distributions for various fragments and light charged particles have been measured in a wide angular range in several reactions. In the 20Ne+12C reaction, the fragment yield was mostly from the equilibrium decay of composite system, although the cross-sections for B, C, N fragments were higher than the statistical model predictions. This enhancement in cross-section indicated the survival of orbiting-like phenomenon at the energy > 7 MeV/nucleon. The composite system is also deformed. In 20Ne+27Al reaction, both deep-inelastic and fusion-fission processes were found to contribute significantly to the fragment yield. The time scale for the deep-inelastic process was 10-22 seconds. It has been found that the extracted values of angular momentum dissipation were more than the corresponding phenomenological (sticking) limit predictions for light fragments. In addition, in- plane coincidence data gives information about the decay of the hot composite formed 20Ne+12C reaction at 158 MeV.

Advances in Nuclear Physics

Advances in Nuclear Physics PDF Author: John Negele
Publisher: Springer
ISBN: 1461398983
Category : Science
Languages : en
Pages : 229

Get Book Here

Book Description
"Analytic Insights into Intermediate-Energy Hadron-Nucleus Scattering," by R. D. Amado, presents a review of optical diffraction leading into discussions of elastic scattering, single- and multistep inelastic scattering, spin observables, and directions indicated for further research. "Recent Developments in Quasi-Free Nucleon-Nucleon Scattering," by P. Kitching, W. J. McDonald, Th. A. J. Maris, and C. A. Z. Vascon cellos, opens with a comprehensive review of the theory, going on to detail frontier research advances in spin dependence in (p, 2p) scattering, isospin dependence, and other quasi-free reactions. The final chapter, "Energetic Particle Emission in Nuclear Reactions" by D. H. Baal, explores new findings regarding direct interactions in the nucleus, thermalization and multiple scattering in nucleon emission, light fragment formation, and production of intermediate-mass fragments. A valuable and instructive trio of papers, Volume 15 of Advances in Nuclear Physics will be of interest to nonspecialists as well as specialists in the fields of nuclear physics, high-energy physics, and theoretical physics. J. W. NEGELE E. VoGT ix CONTENTS Chapter 1 ANALYTIC INSIGHTS INTO INTERMEDIATE-ENERGY HADRON-NUCLEUS SCATTERING R. D. Amado I. Introduction . . . . . . . . . . . . . . . . . . . . .

Nuclear Fission and Heavy-ion-induced Reactions

Nuclear Fission and Heavy-ion-induced Reactions PDF Author: Wolf-Udo Schröder
Publisher: Routledge
ISBN:
Category : Science
Languages : en
Pages : 552

Get Book Here

Book Description


Developing Techniques For High Fidelity Studies of Reactions with Light Weakly Bound Nuclei

Developing Techniques For High Fidelity Studies of Reactions with Light Weakly Bound Nuclei PDF Author: Ian Carter
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Research capabilities in nuclear physics have greatly expanded in recent years with the availability of radioactive ion beams and exotic nuclei near the drip line. As a result, new phenomena are being discovered in areas of nuclear reactions and nuclear structure. This thesis work is focused on studies of reaction mechanisms of light weakly bound nuclei at energies near the Coulomb barrier, where nuclear structure influences nuclear reactions outcomes. Two strands towards this end were followed concurrently; the first, to develop a radioactive beam capability to enable reaction studies with 6 He and 8 Li nuclei, and the second, to study the systematics of breakup mechanisms of the stable but weakly bound nucleus 9 Be in interactions with targets of mass A = 40-124. The radioactive beam capability at the Australian National University uses in-flight transfer reactions to produce light unstable beams. The radioactive ion species of interest are then transported and focused onto a secondary target using the magnetic field generated by a superconducting solenoid. The relatively low purities of the unstable beam obtained using a single solenoid (typically 30%) normally necessitates the use of two solenoids in tandem to further purify the radioactive ion beam as done at the TwinSol (USA) and RIBRAS (BRAZIL) facilities. A unique feature of the Australian National University (ANU) radioactive beam capability is a pair of tracking detectors placed at the exit of the solenoid that allows identification and determination of the trajectories of the radioactive species, and electronic tagging event-by-event. These detectors were developed and successfully implemented as part of this thesis work. The reconstruction of ion trajectories using these detectors aids in rejection of contaminant species. Effective beam purities of greater than 90% have been achieved for 6 He and 8 Li, with most impurities being tritons. The tracking detectors have demonstrated rate handling capability of 3×10 6 particles per second. The trajectory reconstruction also provides information on the point of interaction and the angle of incidence of the ion on the secondary target, allowing precise reconstruction of reaction kinematics which is necessary for high fidelity studies of nuclear reactions. Details of the ion transport, tracking detector performance and secondary beam characteristics are described in this thesis, along with the results of the first experiment using a radioactive beam of 8 Li from the ANU capability. Parallel to developing the tracking detectors, experiments with 9 Be, identifying and characterising all breakup mechanisms of 9 Be incident on targets of mass A = 40-124 were carried out. These experiments were done at several energies below the fusion barrier to minimise absorption of breakup fragments by the target. The charged breakup fragments were detected in BALiN, a highly pixelated double sided silicon detector array. The dominance of n-transfer from 9 Be to the target, forming 8 Be, is observed over the entire target mass-region studied in this thesis. Following transfer the 8 Be formed breaks up into two alpha particles. The relative energies of the two coincident alpha particles are used to separate breakup following population of the long-lived ground state of 8 Be from the shorter-lived excited states. This separation is significant since complete fusion cannot be affected by breakup occurring on a time-scale slower than fusion. Selecting the near-target breakup events, and presenting their probability as a function of the radial separation of the projectile and target, can be used in a classical trajectory model to predict suppression of complete fusion at above-barrier energies. The experimental results obtained in this work, combined with the previous studies of 9 Be on heavy targets, give the systematics of breakup in reactions with masses ranging from 40 to 209 u. Such systematics should aid in the developments of models of reactions with weakly bound nuclei.