Studies in X-ray Dynamic Speckle Imaging

Studies in X-ray Dynamic Speckle Imaging PDF Author: Sarah Catherine Irvine
Publisher:
ISBN:
Category :
Languages : en
Pages : 436

Get Book Here

Book Description
This thesis describes the study of two dynamic speckle systems present in the context of X-ray propagation-based phase contrast imaging. The first application to be examined is that of the rotating random phase screen diffuser, used in phase contrast imaging in order to improve the homogeneity of the sample-incident beam and thus ideally the image quality. The second pertains to the technique of flow measurement from analysis of blood speckle patterns. Whilst speckle is central to both of these, it is in quite different ways: a moving diffuser introduces a temporallyuncorrelated dynamic speckle pattern, the observed effect of which is an incoherently averaged smooth background intensity. Conversely, the time-dependent correlation of dynamic blood speckle patterns is deliberately exploited as a useful tool for the quantitative determination of flow. In the first instance we present the spatial coherence measurements of the biomedical imaging beamline BL20XU at SPring8, Japan, using a simple, low-cost prism based interferometry method developed by Suzuki (2004). We then study the effect of the addition of a rotating diffuser to the setup. Besides the observed increase in beam-homogeneity due to the diffuser, we show that the diffuser acts to decrease the observed degree of coherence as a fixed percentage of that measured in its absence. We are able to reproduce this effect in simulation via the model of the diffuser as the time-averaged incoherent sum of speckled intensities caused by random phaseperturbations to the X-ray wavefield. Following this key result, we extend our investigationof diffusers to study their effect on the quality of typical propagation-based phase contrast images, which depend on the high contrast and visibility of Fresnel diffraction fringe features. The deleterious effect of the diffuser on these fringes is demonstrated to be minimisable through the simple expedient of placing the diffuser as close as possible to the effective source of the beamline. This is explained through a discussion of local transverse phase gradients. In the second application which comprises the majority of this thesis, we begin with a characterising study of the speckle patterns observed in propagation-based X-ray phase contrast images of blood, a phenomenon insufficiently explained in the literature of the time. We adopt a theoretical model which allows us to view blood as a two-material system of randomly positioned red blood cells suspended within a plasma matrix, the projection of which effectively creates a weak random phase perturbation of the X-ray wavefield. Free-space propagation and associated self-interference of this wavefield yields phase contrast in the form of speckle. Its statistical analysis is demonstrated possible through inspection of the magnitude of the Fourier transform of the intensity. The Fourier description of the speckle is well characterised via application of the linear phase Contrast Transfer Function (CTF) formalism for weak objects in the Fresnel regime. The agreement between experiment, simulation and analytical expression is strong, providing an improved understanding of the speckle which may be applied to the velocimetric analysis of dynamic patterns. In view of the ultimate goal of achieving a high-resolution, accurate blood flow measurement technique capable of full-field multi-component vector analysis for in vivo cardiovascular research, we apply our knowledge of the speckle system to recommend key steps for future analysis of dynamic speckle patterns. We find it necessary to use single-image phase retrieval methods, specifically one based on the transport of intensity equation. For images recorded with typical levels of noise, the TIE-based phase retrieval algorithm requires significant regularisation due to the very low contribution of absorption to the final contrast. We also demonstrate the utility of Fourier mask filters for suppression of unwanted image artefacts. With the flow signal thus optimised, we develop methods for flow reconstruction based on the Abel transform. For a rotationally-symmetric flow, we present the first tomographic reconstructions of axial blood flow within a cylinder; after which we extend the validity of the reconstruction theory to include non-axial flow, culminating in the full, four-dimensional reconstruction of pulsatile flow within a simple in vitro stenotic model. Importantly, this new vector tomographic reconstruction technique may be achieved with single image pairs, which is important for non-steady flow patterns.

Studies in X-ray Dynamic Speckle Imaging

Studies in X-ray Dynamic Speckle Imaging PDF Author: Sarah Catherine Irvine
Publisher:
ISBN:
Category :
Languages : en
Pages : 436

Get Book Here

Book Description
This thesis describes the study of two dynamic speckle systems present in the context of X-ray propagation-based phase contrast imaging. The first application to be examined is that of the rotating random phase screen diffuser, used in phase contrast imaging in order to improve the homogeneity of the sample-incident beam and thus ideally the image quality. The second pertains to the technique of flow measurement from analysis of blood speckle patterns. Whilst speckle is central to both of these, it is in quite different ways: a moving diffuser introduces a temporallyuncorrelated dynamic speckle pattern, the observed effect of which is an incoherently averaged smooth background intensity. Conversely, the time-dependent correlation of dynamic blood speckle patterns is deliberately exploited as a useful tool for the quantitative determination of flow. In the first instance we present the spatial coherence measurements of the biomedical imaging beamline BL20XU at SPring8, Japan, using a simple, low-cost prism based interferometry method developed by Suzuki (2004). We then study the effect of the addition of a rotating diffuser to the setup. Besides the observed increase in beam-homogeneity due to the diffuser, we show that the diffuser acts to decrease the observed degree of coherence as a fixed percentage of that measured in its absence. We are able to reproduce this effect in simulation via the model of the diffuser as the time-averaged incoherent sum of speckled intensities caused by random phaseperturbations to the X-ray wavefield. Following this key result, we extend our investigationof diffusers to study their effect on the quality of typical propagation-based phase contrast images, which depend on the high contrast and visibility of Fresnel diffraction fringe features. The deleterious effect of the diffuser on these fringes is demonstrated to be minimisable through the simple expedient of placing the diffuser as close as possible to the effective source of the beamline. This is explained through a discussion of local transverse phase gradients. In the second application which comprises the majority of this thesis, we begin with a characterising study of the speckle patterns observed in propagation-based X-ray phase contrast images of blood, a phenomenon insufficiently explained in the literature of the time. We adopt a theoretical model which allows us to view blood as a two-material system of randomly positioned red blood cells suspended within a plasma matrix, the projection of which effectively creates a weak random phase perturbation of the X-ray wavefield. Free-space propagation and associated self-interference of this wavefield yields phase contrast in the form of speckle. Its statistical analysis is demonstrated possible through inspection of the magnitude of the Fourier transform of the intensity. The Fourier description of the speckle is well characterised via application of the linear phase Contrast Transfer Function (CTF) formalism for weak objects in the Fresnel regime. The agreement between experiment, simulation and analytical expression is strong, providing an improved understanding of the speckle which may be applied to the velocimetric analysis of dynamic patterns. In view of the ultimate goal of achieving a high-resolution, accurate blood flow measurement technique capable of full-field multi-component vector analysis for in vivo cardiovascular research, we apply our knowledge of the speckle system to recommend key steps for future analysis of dynamic speckle patterns. We find it necessary to use single-image phase retrieval methods, specifically one based on the transport of intensity equation. For images recorded with typical levels of noise, the TIE-based phase retrieval algorithm requires significant regularisation due to the very low contribution of absorption to the final contrast. We also demonstrate the utility of Fourier mask filters for suppression of unwanted image artefacts. With the flow signal thus optimised, we develop methods for flow reconstruction based on the Abel transform. For a rotationally-symmetric flow, we present the first tomographic reconstructions of axial blood flow within a cylinder; after which we extend the validity of the reconstruction theory to include non-axial flow, culminating in the full, four-dimensional reconstruction of pulsatile flow within a simple in vitro stenotic model. Importantly, this new vector tomographic reconstruction technique may be achieved with single image pairs, which is important for non-steady flow patterns.

X-ray Phase-Contrast Imaging Using Near-Field Speckles

X-ray Phase-Contrast Imaging Using Near-Field Speckles PDF Author: Marie-Christine Zdora
Publisher: Springer Nature
ISBN: 3030663299
Category : Science
Languages : en
Pages : 337

Get Book Here

Book Description
This thesis presents research on novel X-ray imaging methods that improve the study of specimens with small density differences, revealing their inner structure and density distribution. Exploiting the phase shift of X-rays in a material can significantly increase the image contrast compared to conventional absorption imaging. This thesis provides a practical guide to X-ray phase-contrast imaging with a strong focus on X-ray speckle-based imaging, the most recently developed phase-sensitive method. X-ray speckle-based imaging only requires a piece of abrasive paper in addition to the standard X-ray imaging setup. Its simplicity and robustness combined with the compatibility with laboratory X-ray sources, make it an ideal candidate for wide user uptake in a range of fields. An in-depth overview of the state of the art of X-ray speckle-based imaging and its latest developments is given in this thesis. It, furthermore, explores a broad range of applications, from X-ray optics characterisation, to biomedical imaging for 3D virtual histology and geological studies of volcanic rocks, demonstrating is promising potential. Moreover, the speckle-based technique is placed in the context of other phase-sensitive X-ray imaging methods to assist in the choice of a suitable method, hence serving as a guide and reference work for future users.

Emerging Imaging Technologies in Medicine

Emerging Imaging Technologies in Medicine PDF Author: Mark A. Anastasio
Publisher: CRC Press
ISBN: 1439880417
Category : Medical
Languages : en
Pages : 365

Get Book Here

Book Description
From the discovery of x-rays in 1895 through the emergence of computed tomography (CT) in the 1970s and magnetic resonance imaging (MRI) in the 1980s, non-invasive imaging has revolutionized the practice of medicine. While these technologies have thoroughly penetrated clinical practice, scientists continue to develop novel approaches that promise to push imaging into entirely new clinical realms, while addressing the issues of dose, sensitivity, or specificity that limit existing imaging approaches. Emerging Imaging Technologies in Medicine surveys a number of emerging technologies that have the promise to find routine clinical use in the near- (less than five years), mid- (five to ten years) and long-term (more than ten years) time frames. Each chapter provides a detailed discussion of the associated physics and technology, and addresses improvements in terms of dose, sensitivity, and specificity, which are limitations of current imaging approaches. In particular, the book focuses on modalities with clinical potential rather than those likely to have an impact mainly in preclinical animal imaging. The last ten years have been a period of fervent creativity and progress in imaging technology, with improvements in computational power, nanofabrication, and laser and detector technology leading to major new developments in phase-contrast imaging, photoacoustic imaging, and optical imaging.

Synchrotron Light Sources and Free-Electron Lasers

Synchrotron Light Sources and Free-Electron Lasers PDF Author: Eberhard J. Jaeschke
Publisher: Springer
ISBN: 9783319143934
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.

Cohesive sedimentary systems: Dynamics and deposits

Cohesive sedimentary systems: Dynamics and deposits PDF Author: Andrew James Manning
Publisher: Frontiers Media SA
ISBN: 2832543774
Category : Science
Languages : en
Pages : 324

Get Book Here

Book Description


Structural Dynamics with X-ray and Electron Scattering

Structural Dynamics with X-ray and Electron Scattering PDF Author: Kasra Amini
Publisher: Royal Society of Chemistry
ISBN: 1837671583
Category : Science
Languages : en
Pages : 567

Get Book Here

Book Description
Since the early 20th century, X-ray and electron scattering has provided a powerful means by which the location of atoms can be identified in gas-phase molecules and condensed matter with sub-atomic spatial resolution. Scattering techniques can also provide valuable observables of the fundamental properties of electrons in matter such as an electron’s spin and its energy. In recent years, significant technological developments in both X-ray and electron scattering have paved the way to time-resolved analogues capable of capturing real-time snapshots of transient structures undergoing a photochemical reaction. Structural Dynamics with X-ray and Electron Scattering is a two-part book that firstly introduces the fundamental background to scattering theory and photochemical phenomena of interest. The second part discusses the latest advances and research results from the application of ultrafast scattering techniques to imaging the structure and dynamics of gas-phase molecules and condensed matter. This book aims to provide a unifying platform for X-ray and electron scattering.

Applications of Coherent X-Ray Scattering to Two Important Problems in Condensed Matter Physics

Applications of Coherent X-Ray Scattering to Two Important Problems in Condensed Matter Physics PDF Author: Yi Yang
Publisher:
ISBN:
Category :
Languages : en
Pages : 80

Get Book Here

Book Description
In the last decades, the commissioning of high-energy, third-generation synchrotrons presents new opportunities for research with brilliant coherent X-ray beams. It allows us to study various systems' structure and dynamics at shorter length scale than laser via diffraction patterns. In the Chapter 3, we adopted the laser technique Photon Correlation Spectroscopy to study the dynamical correlations of the spin-glass transition. We have implemented this method to observe and accurately characterize the critical slowing down of the spin orientation fluctuations in the classic metallic spin glass alloy CuMn over time scales of 100 to 103 secs. In the Chapter 4, we adopted the diffraction imaging method to retrieve the phase of the speckle pattern produced by the scattering of a coherent X-ray beam to reconstruct the image of samples at nanometer length scales. We have extended the oversampling methods and iterative schemes to use the full Distorted-Wave Born Approximation (DWBA) expression for the speckle pattern. The results obtained from detailed computer simulations of the scattering and reconstruction are very encouraging in showing that the method works. Verification with real experiments is planned.

Dynamic Laser Speckle and Applications

Dynamic Laser Speckle and Applications PDF Author: Hector J. Rabal
Publisher: CRC Press
ISBN: 1351834975
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
Speckle study constitutes a multidisciplinary area with inherent complexities. In order to conquer challenges such as the variability of samples and sensitive measurements, researchers must develop a theoretical and statistical understanding of both biological and non-biological metrology using dynamic speckle laser. Dynamic Laser Speckle and Applications discusses the main methodologies used to analyze biospeckle phenomena with a strong focus on experimentation. After establishing a theoretical background in both speckle and biospeckle, the book presents the main methodologies for statistical and image analysis. It then deals with the concept of frequency decomposition before moving on to a discussion of fuzzy methods to treat dynamic speckle data. The book dedicates two sections to applications, including agricultural approaches. Additional features include photo images of experiments and software to aid in easy start-up of dynamic speckle usage. A systematic approach to new dynamic speckle laser phenomena, this book provides the physical theory and statistical background needed to analyze images formed by laser illumination in biological and non-biological samples.

Handbook of X-ray Imaging

Handbook of X-ray Imaging PDF Author: Paolo Russo
Publisher: CRC Press
ISBN: 149874155X
Category : Medical
Languages : en
Pages : 2606

Get Book Here

Book Description
Containing chapter contributions from over 130 experts, this unique publication is the first handbook dedicated to the physics and technology of X-ray imaging, offering extensive coverage of the field. This highly comprehensive work is edited by one of the world’s leading experts in X-ray imaging physics and technology and has been created with guidance from a Scientific Board containing respected and renowned scientists from around the world. The book's scope includes 2D and 3D X-ray imaging techniques from soft-X-ray to megavoltage energies, including computed tomography, fluoroscopy, dental imaging and small animal imaging, with several chapters dedicated to breast imaging techniques. 2D and 3D industrial imaging is incorporated, including imaging of artworks. Specific attention is dedicated to techniques of phase contrast X-ray imaging. The approach undertaken is one that illustrates the theory as well as the techniques and the devices routinely used in the various fields. Computational aspects are fully covered, including 3D reconstruction algorithms, hard/software phantoms, and computer-aided diagnosis. Theories of image quality are fully illustrated. Historical, radioprotection, radiation dosimetry, quality assurance and educational aspects are also covered. This handbook will be suitable for a very broad audience, including graduate students in medical physics and biomedical engineering; medical physics residents; radiographers; physicists and engineers in the field of imaging and non-destructive industrial testing using X-rays; and scientists interested in understanding and using X-ray imaging techniques. The handbook's editor, Dr. Paolo Russo, has over 30 years’ experience in the academic teaching of medical physics and X-ray imaging research. He has authored several book chapters in the field of X-ray imaging, is Editor-in-Chief of an international scientific journal in medical physics, and has responsibilities in the publication committees of international scientific organizations in medical physics. Features: Comprehensive coverage of the use of X-rays both in medical radiology and industrial testing The first handbook published to be dedicated to the physics and technology of X-rays Handbook edited by world authority, with contributions from experts in each field

X-Ray Diffraction Imaging

X-Ray Diffraction Imaging PDF Author: Joel Greenberg
Publisher: CRC Press
ISBN: 0429591802
Category : Technology & Engineering
Languages : en
Pages : 256

Get Book Here

Book Description
This book explores novel methods for implementing X-ray diffraction technology as an imaging modality, which have been made possible through recent breakthroughs in detector technology, computational power, and data processing algorithms. The ability to perform fast, spatially-resolved X-ray diffraction throughout the volume of a sample opens up entirely new possibilities in areas such as material analysis, cancer diagnosis, and explosive detection, thus offering the potential to revolutionize the fields of medical, security, and industrial imaging and detection. Featuring chapters written by an international selection of authors from both academia and industry, the book provides a comprehensive discussion of the underlying physics, architectures, and applications of X-ray diffraction imaging that is accessible and relevant to neophytes and experts alike. Teaches novel methods for X-ray diffraction imaging Comprehensive and self-contained discussion of the relevant physics, imaging techniques, system components, and data processing algorithms Features state-of-the-art work of international authors from both academia and industry. Includes practical applications in the medical, industrial, and security sectors