Author: Dirk P. Kroese
Publisher: John Wiley & Sons
ISBN: 0470285303
Category : Mathematics
Languages : en
Pages : 204
Book Description
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB® programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.
Student Solutions Manual to accompany Simulation and the Monte Carlo Method, Student Solutions Manual
Author: Dirk P. Kroese
Publisher: John Wiley & Sons
ISBN: 0470285303
Category : Mathematics
Languages : en
Pages : 204
Book Description
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB® programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.
Publisher: John Wiley & Sons
ISBN: 0470285303
Category : Mathematics
Languages : en
Pages : 204
Book Description
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB® programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.
Student Solutions Manual to accompany Simulation and the Monte Carlo Method
Author: Dirk P. Kroese
Publisher: Wiley-Interscience
ISBN: 9780470258798
Category : Mathematics
Languages : en
Pages : 188
Book Description
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB® programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.
Publisher: Wiley-Interscience
ISBN: 9780470258798
Category : Mathematics
Languages : en
Pages : 188
Book Description
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB® programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.
Statistical Intervals
Author: William Q. Meeker
Publisher: John Wiley & Sons
ISBN: 1118594959
Category : Mathematics
Languages : en
Pages : 648
Book Description
Describes statistical intervals to quantify sampling uncertainty,focusing on key application needs and recently developed methodology in an easy-to-apply format Statistical intervals provide invaluable tools for quantifying sampling uncertainty. The widely hailed first edition, published in 1991, described the use and construction of the most important statistical intervals. Particular emphasis was given to intervals—such as prediction intervals, tolerance intervals and confidence intervals on distribution quantiles—frequently needed in practice, but often neglected in introductory courses. Vastly improved computer capabilities over the past 25 years have resulted in an explosion of the tools readily available to analysts. This second edition—more than double the size of the first—adds these new methods in an easy-to-apply format. In addition to extensive updating of the original chapters, the second edition includes new chapters on: Likelihood-based statistical intervals Nonparametric bootstrap intervals Parametric bootstrap and other simulation-based intervals An introduction to Bayesian intervals Bayesian intervals for the popular binomial, Poisson and normal distributions Statistical intervals for Bayesian hierarchical models Advanced case studies, further illustrating the use of the newly described methods New technical appendices provide justification of the methods and pathways to extensions and further applications. A webpage directs readers to current readily accessible computer software and other useful information. Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition is an up-to-date working guide and reference for all who analyze data, allowing them to quantify the uncertainty in their results using statistical intervals.
Publisher: John Wiley & Sons
ISBN: 1118594959
Category : Mathematics
Languages : en
Pages : 648
Book Description
Describes statistical intervals to quantify sampling uncertainty,focusing on key application needs and recently developed methodology in an easy-to-apply format Statistical intervals provide invaluable tools for quantifying sampling uncertainty. The widely hailed first edition, published in 1991, described the use and construction of the most important statistical intervals. Particular emphasis was given to intervals—such as prediction intervals, tolerance intervals and confidence intervals on distribution quantiles—frequently needed in practice, but often neglected in introductory courses. Vastly improved computer capabilities over the past 25 years have resulted in an explosion of the tools readily available to analysts. This second edition—more than double the size of the first—adds these new methods in an easy-to-apply format. In addition to extensive updating of the original chapters, the second edition includes new chapters on: Likelihood-based statistical intervals Nonparametric bootstrap intervals Parametric bootstrap and other simulation-based intervals An introduction to Bayesian intervals Bayesian intervals for the popular binomial, Poisson and normal distributions Statistical intervals for Bayesian hierarchical models Advanced case studies, further illustrating the use of the newly described methods New technical appendices provide justification of the methods and pathways to extensions and further applications. A webpage directs readers to current readily accessible computer software and other useful information. Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition is an up-to-date working guide and reference for all who analyze data, allowing them to quantify the uncertainty in their results using statistical intervals.
Simulation
Author: Sheldon M. Ross
Publisher: Academic Press
ISBN: 0124158250
Category : Computers
Languages : en
Pages : 326
Book Description
"In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"--
Publisher: Academic Press
ISBN: 0124158250
Category : Computers
Languages : en
Pages : 326
Book Description
"In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"--
Simulation and the Monte Carlo Method, 2nd Edition Set
Author: Reuven Y. Rubinstein
Publisher: Wiley-Interscience
ISBN: 9780470345245
Category : Mathematics
Languages : en
Pages : 0
Book Description
This set contains the text Simulation and the Monte Carlo Method, Second Edition 9780470177945 and the Student Solutions Manual to Accompany Simulation and the Monte Carlo Method, Second Edition 9780470258798.
Publisher: Wiley-Interscience
ISBN: 9780470345245
Category : Mathematics
Languages : en
Pages : 0
Book Description
This set contains the text Simulation and the Monte Carlo Method, Second Edition 9780470177945 and the Student Solutions Manual to Accompany Simulation and the Monte Carlo Method, Second Edition 9780470258798.
Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Quantitative Methods
Author: Paolo Brandimarte
Publisher: John Wiley & Sons
ISBN: 111802348X
Category : Mathematics
Languages : en
Pages : 812
Book Description
An accessible introduction to the essential quantitative methods for making valuable business decisions Quantitative methods-research techniques used to analyze quantitative data-enable professionals to organize and understand numbers and, in turn, to make good decisions. Quantitative Methods: An Introduction for Business Management presents the application of quantitative mathematical modeling to decision making in a business management context and emphasizes not only the role of data in drawing conclusions, but also the pitfalls of undiscerning reliance of software packages that implement standard statistical procedures. With hands-on applications and explanations that are accessible to readers at various levels, the book successfully outlines the necessary tools to make smart and successful business decisions. Progressing from beginner to more advanced material at an easy-to-follow pace, the author utilizes motivating examples throughout to aid readers interested in decision making and also provides critical remarks, intuitive traps, and counterexamples when appropriate. The book begins with a discussion of motivations and foundations related to the topic, with introductory presentations of concepts from calculus to linear algebra. Next, the core ideas of quantitative methods are presented in chapters that explore introductory topics in probability, descriptive and inferential statistics, linear regression, and a discussion of time series that includes both classical topics and more challenging models. The author also discusses linear programming models and decision making under risk as well as less standard topics in the field such as game theory and Bayesian statistics. Finally, the book concludes with a focus on selected tools from multivariate statistics, including advanced regression models and data reduction methods such as principal component analysis, factor analysis, and cluster analysis. The book promotes the importance of an analytical approach, particularly when dealing with a complex system where multiple individuals are involved and have conflicting incentives. A related website features Microsoft Excel® workbooks and MATLAB® scripts to illustrate concepts as well as additional exercises with solutions. Quantitative Methods is an excellent book for courses on the topic at the graduate level. The book also serves as an authoritative reference and self-study guide for financial and business professionals, as well as readers looking to reinforce their analytical skills.
Publisher: John Wiley & Sons
ISBN: 111802348X
Category : Mathematics
Languages : en
Pages : 812
Book Description
An accessible introduction to the essential quantitative methods for making valuable business decisions Quantitative methods-research techniques used to analyze quantitative data-enable professionals to organize and understand numbers and, in turn, to make good decisions. Quantitative Methods: An Introduction for Business Management presents the application of quantitative mathematical modeling to decision making in a business management context and emphasizes not only the role of data in drawing conclusions, but also the pitfalls of undiscerning reliance of software packages that implement standard statistical procedures. With hands-on applications and explanations that are accessible to readers at various levels, the book successfully outlines the necessary tools to make smart and successful business decisions. Progressing from beginner to more advanced material at an easy-to-follow pace, the author utilizes motivating examples throughout to aid readers interested in decision making and also provides critical remarks, intuitive traps, and counterexamples when appropriate. The book begins with a discussion of motivations and foundations related to the topic, with introductory presentations of concepts from calculus to linear algebra. Next, the core ideas of quantitative methods are presented in chapters that explore introductory topics in probability, descriptive and inferential statistics, linear regression, and a discussion of time series that includes both classical topics and more challenging models. The author also discusses linear programming models and decision making under risk as well as less standard topics in the field such as game theory and Bayesian statistics. Finally, the book concludes with a focus on selected tools from multivariate statistics, including advanced regression models and data reduction methods such as principal component analysis, factor analysis, and cluster analysis. The book promotes the importance of an analytical approach, particularly when dealing with a complex system where multiple individuals are involved and have conflicting incentives. A related website features Microsoft Excel® workbooks and MATLAB® scripts to illustrate concepts as well as additional exercises with solutions. Quantitative Methods is an excellent book for courses on the topic at the graduate level. The book also serves as an authoritative reference and self-study guide for financial and business professionals, as well as readers looking to reinforce their analytical skills.
Simulation Modeling and Arena
Author: Manuel D. Rossetti
Publisher: John Wiley & Sons
ISBN: 111885814X
Category : Mathematics
Languages : en
Pages : 746
Book Description
Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition also introduces the use of the open source statistical package, R, for both performing statistical testing and fitting distributions. In addition, the models are presented in a clear and precise pseudo-code form, which aids in understanding and model communication. Simulation Modeling and Arena, Second Edition also features: Updated coverage of necessary statistical modeling concepts such as confidence interval construction, hypothesis testing, and parameter estimation Additional examples of the simulation clock within discrete event simulation modeling involving the mechanics of time advancement by hand simulation A guide to the Arena Run Controller, which features a debugging scenario New homework problems that cover a wider range of engineering applications in transportation, logistics, healthcare, and computer science A related website with an Instructor’s Solutions Manual, PowerPoint® slides, test bank questions, and data sets for each chapter Simulation Modeling and Arena, Second Edition is an ideal textbook for upper-undergraduate and graduate courses in modeling and simulation within statistics, mathematics, industrial and civil engineering, construction management, business, computer science, and other departments where simulation is practiced. The book is also an excellent reference for professionals interested in mathematical modeling, simulation, and Arena.
Publisher: John Wiley & Sons
ISBN: 111885814X
Category : Mathematics
Languages : en
Pages : 746
Book Description
Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition also introduces the use of the open source statistical package, R, for both performing statistical testing and fitting distributions. In addition, the models are presented in a clear and precise pseudo-code form, which aids in understanding and model communication. Simulation Modeling and Arena, Second Edition also features: Updated coverage of necessary statistical modeling concepts such as confidence interval construction, hypothesis testing, and parameter estimation Additional examples of the simulation clock within discrete event simulation modeling involving the mechanics of time advancement by hand simulation A guide to the Arena Run Controller, which features a debugging scenario New homework problems that cover a wider range of engineering applications in transportation, logistics, healthcare, and computer science A related website with an Instructor’s Solutions Manual, PowerPoint® slides, test bank questions, and data sets for each chapter Simulation Modeling and Arena, Second Edition is an ideal textbook for upper-undergraduate and graduate courses in modeling and simulation within statistics, mathematics, industrial and civil engineering, construction management, business, computer science, and other departments where simulation is practiced. The book is also an excellent reference for professionals interested in mathematical modeling, simulation, and Arena.
Using R for Introductory Statistics
Author: John Verzani
Publisher: CRC Press
ISBN: 1315360306
Category : Computers
Languages : en
Pages : 522
Book Description
The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.
Publisher: CRC Press
ISBN: 1315360306
Category : Computers
Languages : en
Pages : 522
Book Description
The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.
Understanding Computer Simulation
Author: Roger McHaney
Publisher: Bookboon
ISBN: 8776815056
Category : Computer simulation
Languages : en
Pages : 172
Book Description
Publisher: Bookboon
ISBN: 8776815056
Category : Computer simulation
Languages : en
Pages : 172
Book Description