Author: Vadim Olshevsky
Publisher: American Mathematical Soc.
ISBN: 0821819216
Category : Matrices
Languages : en
Pages : 346
Book Description
"The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.
Structured Matrices in Mathematics, Computer Science, and Engineering I
Author: Vadim Olshevsky
Publisher: American Mathematical Soc.
ISBN: 0821819216
Category : Matrices
Languages : en
Pages : 346
Book Description
"The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.
Publisher: American Mathematical Soc.
ISBN: 0821819216
Category : Matrices
Languages : en
Pages : 346
Book Description
"The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.
Structured Matrices in Mathematics, Computer Science, and Engineering II
Author: Vadim Olshevsky
Publisher: American Mathematical Soc.
ISBN: 0821820923
Category : Mathematics
Languages : en
Pages : 362
Book Description
"The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.
Publisher: American Mathematical Soc.
ISBN: 0821820923
Category : Mathematics
Languages : en
Pages : 362
Book Description
"The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.
Structured Matrices in Mathematics, Computer Science, and Engineering I
Author:
Publisher: American Mathematical Soc.
ISBN: 9780821856161
Category : Matrices
Languages : en
Pages :
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821856161
Category : Matrices
Languages : en
Pages :
Book Description
Structured Matrices in Mathematics, Computer Science, and Engineering:
Author: American Mathematical Society (Providence, Estados Unidos). Joint Summer Research Conference
Publisher:
ISBN: 9780821820926
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780821820926
Category :
Languages : en
Pages :
Book Description
Topology and Geometry: Commemorating SISTAG
Author: A. Jon Berrick
Publisher: American Mathematical Soc.
ISBN: 0821828207
Category : Mathematics
Languages : en
Pages : 296
Book Description
This volume presents 19 refereed articles written by participants in the Singapore International Symposium in Topology and Geometry (SISTAG), held July 2-6, 2001, at the National University of Singapore. Rather than being a simple snapshot of the meeting in the form of a proceedings, it serves as a commemorative volume consisting of papers selected to show the diversity and depth of the mathematics presented at SISTAG. The book contains articles on low-dimensional topology, algebraic, differential and symplectic geometry, and algebraic topology. While papers reflect the focus of the conference, many documents written after SISTAG and included in this volume represent the most up-to-date thinking in the fields of topology and geometry. While representation from Pacific Rim countries is strong, the list of contributors is international in scope and includes many recognized experts. This volume is of interest to graduate students and mathematicians working in the fields of algebraic, differential and symplectic geometry, algebraic, geometric and low-dimensional topology, and mathematical physics.
Publisher: American Mathematical Soc.
ISBN: 0821828207
Category : Mathematics
Languages : en
Pages : 296
Book Description
This volume presents 19 refereed articles written by participants in the Singapore International Symposium in Topology and Geometry (SISTAG), held July 2-6, 2001, at the National University of Singapore. Rather than being a simple snapshot of the meeting in the form of a proceedings, it serves as a commemorative volume consisting of papers selected to show the diversity and depth of the mathematics presented at SISTAG. The book contains articles on low-dimensional topology, algebraic, differential and symplectic geometry, and algebraic topology. While papers reflect the focus of the conference, many documents written after SISTAG and included in this volume represent the most up-to-date thinking in the fields of topology and geometry. While representation from Pacific Rim countries is strong, the list of contributors is international in scope and includes many recognized experts. This volume is of interest to graduate students and mathematicians working in the fields of algebraic, differential and symplectic geometry, algebraic, geometric and low-dimensional topology, and mathematical physics.
The Geometrical Study of Differential Equations
Author: Joshua Allensworth Leslie
Publisher: American Mathematical Soc.
ISBN: 0821829645
Category : Mathematics
Languages : en
Pages : 226
Book Description
This volume contains papers based on some of the talks given at the NSF-CBMS conference on ``The Geometrical Study of Differential Equations'' held at Howard University (Washington, DC). The collected papers present important recent developments in this area, including the treatment of nontransversal group actions in the theory of group invariant solutions of PDEs, a method for obtaining discrete symmetries of differential equations, the establishment of a group-invariant version of the variational complex based on a general moving frame construction, the introduction of a new variational complex for the calculus of difference equations and an original structural investigation of Lie-Backlund transformations. The book opens with a modern and illuminating overview of Lie's line-sphere correspondence and concludes with several interesting open problems arising from symmetry analysis of PDEs. It offers a rich source of inspiration for new or established researchers in the field. This book can serve nicely as a companion volume to a forthcoming book written by the principle speaker at the conference, Professor Niky Kamran, to be published in the AMS series, CBMS Regional Conference Series in Mathematics.
Publisher: American Mathematical Soc.
ISBN: 0821829645
Category : Mathematics
Languages : en
Pages : 226
Book Description
This volume contains papers based on some of the talks given at the NSF-CBMS conference on ``The Geometrical Study of Differential Equations'' held at Howard University (Washington, DC). The collected papers present important recent developments in this area, including the treatment of nontransversal group actions in the theory of group invariant solutions of PDEs, a method for obtaining discrete symmetries of differential equations, the establishment of a group-invariant version of the variational complex based on a general moving frame construction, the introduction of a new variational complex for the calculus of difference equations and an original structural investigation of Lie-Backlund transformations. The book opens with a modern and illuminating overview of Lie's line-sphere correspondence and concludes with several interesting open problems arising from symmetry analysis of PDEs. It offers a rich source of inspiration for new or established researchers in the field. This book can serve nicely as a companion volume to a forthcoming book written by the principle speaker at the conference, Professor Niky Kamran, to be published in the AMS series, CBMS Regional Conference Series in Mathematics.
Differential Geometry and Integrable Systems
Author: Martin A. Guest
Publisher: American Mathematical Soc.
ISBN: 0821829386
Category : Mathematics
Languages : en
Pages : 370
Book Description
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.
Publisher: American Mathematical Soc.
ISBN: 0821829386
Category : Mathematics
Languages : en
Pages : 370
Book Description
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.
Advances in Wave Interaction and Turbulence
Author: Paul A. Milewski
Publisher: American Mathematical Soc.
ISBN: 0821827146
Category : Mathematics
Languages : en
Pages : 130
Book Description
We often think of our natural environment as being composed of very many interacting particles, undergoing individual chaotic motions, of which only very coarse averages are perceptible at scales natural to us. However, we could as well think of the world as being made out of individual waves. This is so not just because the distinction between waves and particles becomes rather blurred at the atomic level, but also because even phenomena at much larger scales are better describedin terms of waves rather than of particles: It is rare in both fluids and solids to observe energy being carried from one region of space to another by a given set of material particles; much more often, this transfer occurs through chains of particles, neither of them moving much, but eachcommunicating with the next, and hence creating these immaterial objects we call waves. Waves occur at many spatial and temporal scales. Many of these waves have small enough amplitude that they can be approximately described by linear theory. However, the joint effect of large sets of waves is governed by nonlinear interactions which are responsible for huge cascades of energy among very disparate scales. Understanding these energy transfers is crucial in order to determine the response oflarge systems, such as the atmosphere and the ocean, to external forcings and dissipation mechanisms which act on scales decades apart. The field of wave turbulence attempts to understand the average behavior of large ensembles of waves, subjected to forcing and dissipation at opposite ends of theirspectrum. It does so by studying individual mechanisms for energy transfer, such as resonant triads and quartets, and attempting to draw from them effects that should not survive averaging. This book presents the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Dispersive Wave Turbulence held at Mt. Holyoke College (MA). It drew together a group of researchers from many corners of the world, in the context of a perceived renaissance of the field, driven by heated debate aboutthe fundamental mechanism of energy transfer among large sets of waves, as well as by novel applications-and old ones revisited-to the understanding of the natural world. These proceedings reflect the spirit that permeated the conference, that of friendly scientific disagreement and genuine wonderat the rich phenomenology of waves.
Publisher: American Mathematical Soc.
ISBN: 0821827146
Category : Mathematics
Languages : en
Pages : 130
Book Description
We often think of our natural environment as being composed of very many interacting particles, undergoing individual chaotic motions, of which only very coarse averages are perceptible at scales natural to us. However, we could as well think of the world as being made out of individual waves. This is so not just because the distinction between waves and particles becomes rather blurred at the atomic level, but also because even phenomena at much larger scales are better describedin terms of waves rather than of particles: It is rare in both fluids and solids to observe energy being carried from one region of space to another by a given set of material particles; much more often, this transfer occurs through chains of particles, neither of them moving much, but eachcommunicating with the next, and hence creating these immaterial objects we call waves. Waves occur at many spatial and temporal scales. Many of these waves have small enough amplitude that they can be approximately described by linear theory. However, the joint effect of large sets of waves is governed by nonlinear interactions which are responsible for huge cascades of energy among very disparate scales. Understanding these energy transfers is crucial in order to determine the response oflarge systems, such as the atmosphere and the ocean, to external forcings and dissipation mechanisms which act on scales decades apart. The field of wave turbulence attempts to understand the average behavior of large ensembles of waves, subjected to forcing and dissipation at opposite ends of theirspectrum. It does so by studying individual mechanisms for energy transfer, such as resonant triads and quartets, and attempting to draw from them effects that should not survive averaging. This book presents the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Dispersive Wave Turbulence held at Mt. Holyoke College (MA). It drew together a group of researchers from many corners of the world, in the context of a perceived renaissance of the field, driven by heated debate aboutthe fundamental mechanism of energy transfer among large sets of waves, as well as by novel applications-and old ones revisited-to the understanding of the natural world. These proceedings reflect the spirit that permeated the conference, that of friendly scientific disagreement and genuine wonderat the rich phenomenology of waves.
Groupoids in Analysis, Geometry, and Physics
Author: Arlan Ramsay
Publisher: American Mathematical Soc.
ISBN: 0821820427
Category : Mathematics
Languages : en
Pages : 208
Book Description
Groupoids often occur when there is symmetry of a nature not expressible in terms of groups. Other uses of groupoids can involve something of a dynamical nature. Indeed, some of the main examples come from group actions. It should also be noted that in many situations where groupoids have been used, the main emphasis has not been on symmetry or dynamics issues. While the implicit symmetry and dynamics are relevant, the groupoid records mostly the structure of the space of leaves and the holonomy. More generally, the use of groupoids is very much related to various notions of orbit equivalance. This book presents the proceedings from the Joint Summer Research Conference on ``Groupoids in Analysis, Geometry, and Physics'' held in Boulder, CO. The book begins with an introduction to ways in which groupoids allow a more comprehensive view of symmetry than is seen via groups. Topics range from foliations, pseudo-differential operators, $KK$-theory, amenability, Fell bundles, and index theory to quantization of Poisson manifolds. Readers will find examples of important tools for working with groupoids. This book is geared to students and researchers. It is intended to improve their understanding of groupoids and to encourage them to look further while learning about the tools used.
Publisher: American Mathematical Soc.
ISBN: 0821820427
Category : Mathematics
Languages : en
Pages : 208
Book Description
Groupoids often occur when there is symmetry of a nature not expressible in terms of groups. Other uses of groupoids can involve something of a dynamical nature. Indeed, some of the main examples come from group actions. It should also be noted that in many situations where groupoids have been used, the main emphasis has not been on symmetry or dynamics issues. While the implicit symmetry and dynamics are relevant, the groupoid records mostly the structure of the space of leaves and the holonomy. More generally, the use of groupoids is very much related to various notions of orbit equivalance. This book presents the proceedings from the Joint Summer Research Conference on ``Groupoids in Analysis, Geometry, and Physics'' held in Boulder, CO. The book begins with an introduction to ways in which groupoids allow a more comprehensive view of symmetry than is seen via groups. Topics range from foliations, pseudo-differential operators, $KK$-theory, amenability, Fell bundles, and index theory to quantization of Poisson manifolds. Readers will find examples of important tools for working with groupoids. This book is geared to students and researchers. It is intended to improve their understanding of groupoids and to encourage them to look further while learning about the tools used.
Numerical Methods for General and Structured Eigenvalue Problems
Author: Daniel Kressner
Publisher: Springer Science & Business Media
ISBN: 3540285024
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.
Publisher: Springer Science & Business Media
ISBN: 3540285024
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.