Structured Learning and Prediction in Computer Vision

Structured Learning and Prediction in Computer Vision PDF Author: Sebastian Nowozin
Publisher: Now Publishers Inc
ISBN: 1601984561
Category : Computers
Languages : en
Pages : 195

Get Book Here

Book Description
Structured Learning and Prediction in Computer Vision introduces the reader to the most popular classes of structured models in computer vision.

Structured Learning and Prediction in Computer Vision

Structured Learning and Prediction in Computer Vision PDF Author: Sebastian Nowozin
Publisher: Now Publishers Inc
ISBN: 1601984561
Category : Computers
Languages : en
Pages : 195

Get Book Here

Book Description
Structured Learning and Prediction in Computer Vision introduces the reader to the most popular classes of structured models in computer vision.

Probabilistic Graphical Models for Computer Vision.

Probabilistic Graphical Models for Computer Vision. PDF Author: Qiang Ji
Publisher: Academic Press
ISBN: 012803467X
Category : Technology & Engineering
Languages : en
Pages : 294

Get Book Here

Book Description
Probabilistic Graphical Models for Computer Vision introduces probabilistic graphical models (PGMs) for computer vision problems and teaches how to develop the PGM model from training data. This book discusses PGMs and their significance in the context of solving computer vision problems, giving the basic concepts, definitions and properties. It also provides a comprehensive introduction to well-established theories for different types of PGMs, including both directed and undirected PGMs, such as Bayesian Networks, Markov Networks and their variants.

Computer Vision -- ECCV 2014

Computer Vision -- ECCV 2014 PDF Author: David Fleet
Publisher: Springer
ISBN: 3319105787
Category : Computers
Languages : en
Pages : 875

Get Book Here

Book Description
The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.

Computer Vision – ECCV 2016

Computer Vision – ECCV 2016 PDF Author: Bastian Leibe
Publisher: Springer
ISBN: 3319464876
Category : Computers
Languages : en
Pages : 909

Get Book Here

Book Description
The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physics-based vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action activity and tracking; 3D; and 9 poster sessions.

Computer Vision – ACCV 2016

Computer Vision – ACCV 2016 PDF Author: Shang-Hong Lai
Publisher: Springer
ISBN: 3319541935
Category : Computers
Languages : en
Pages : 442

Get Book Here

Book Description
The five-volume set LNCS 10111-10115 constitutes the thoroughly refereed post-conference proceedings of the 13th Asian Conference on Computer Vision, ACCV 2016, held in Taipei, Taiwan, in November 2016. The total of 143 contributions presented in these volumes was carefully reviewed and selected from 479 submissions. The papers are organized in topical sections on Segmentation and Classification; Segmentation and Semantic Segmentation; Dictionary Learning, Retrieval, and Clustering; Deep Learning; People Tracking and Action Recognition; People and Actions; Faces; Computational Photography; Face and Gestures; Image Alignment; Computational Photography and Image Processing; Language and Video; 3D Computer Vision; Image Attributes, Language, and Recognition; Video Understanding; and 3D Vision.

Kernel Methods in Computer Vision

Kernel Methods in Computer Vision PDF Author: Christoph H. Lampert
Publisher: Now Publishers Inc
ISBN: 1601982682
Category : Computer vision
Languages : en
Pages : 113

Get Book Here

Book Description
Few developments have influenced the field of computer vision in the last decade more than the introduction of statistical machine learning techniques. Particularly kernel-based classifiers, such as the support vector machine, have become indispensable tools, providing a unified framework for solving a wide range of image-related prediction tasks, including face recognition, object detection and action classification. By emphasizing the geometric intuition that all kernel methods rely on, Kernel Methods in Computer Vision provides an introduction to kernel-based machine learning techniques accessible to a wide audience including students, researchers and practitioners alike, without sacrificing mathematical correctness. It covers not only support vector machines but also less known techniques for kernel-based regression, outlier detection, clustering and dimensionality reduction. Additionally, it offers an outlook on recent developments in kernel methods that have not yet made it into the regular textbooks: structured prediction, dependency estimation and learning of the kernel function. Each topic is illustrated with examples of successful application in the computer vision literature, making Kernel Methods in Computer Vision a useful guide not only for those wanting to understand the working principles of kernel methods, but also for anyone wanting to apply them to real-life problems.

Machine Learning in Computer Vision

Machine Learning in Computer Vision PDF Author: Nicu Sebe
Publisher: Springer Science & Business Media
ISBN: 1402032757
Category : Computers
Languages : en
Pages : 253

Get Book Here

Book Description
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.

Domain Adaptation in Computer Vision with Deep Learning

Domain Adaptation in Computer Vision with Deep Learning PDF Author: Hemanth Venkateswara
Publisher: Springer Nature
ISBN: 3030455297
Category : Computers
Languages : en
Pages : 258

Get Book Here

Book Description
This book provides a survey of deep learning approaches to domain adaptation in computer vision. It gives the reader an overview of the state-of-the-art research in deep learning based domain adaptation. This book also discusses the various approaches to deep learning based domain adaptation in recent years. It outlines the importance of domain adaptation for the advancement of computer vision, consolidates the research in the area and provides the reader with promising directions for future research in domain adaptation. Divided into four parts, the first part of this book begins with an introduction to domain adaptation, which outlines the problem statement, the role of domain adaptation and the motivation for research in this area. It includes a chapter outlining pre-deep learning era domain adaptation techniques. The second part of this book highlights feature alignment based approaches to domain adaptation. The third part of this book outlines image alignment procedures for domain adaptation. The final section of this book presents novel directions for research in domain adaptation. This book targets researchers working in artificial intelligence, machine learning, deep learning and computer vision. Industry professionals and entrepreneurs seeking to adopt deep learning into their applications will also be interested in this book.

Pattern Recognition

Pattern Recognition PDF Author: Shivakumara Palaiahnakote
Publisher: Springer Nature
ISBN: 3030412997
Category : Computers
Languages : en
Pages : 789

Get Book Here

Book Description
This two-volume set constitutes the proceedings of the 5th Asian Conference on ACPR 2019, held in Auckland, New Zealand, in November 2019. The 9 full papers presented in this volume were carefully reviewed and selected from 14 submissions. They cover topics such as: classification; action and video and motion; object detection and anomaly detection; segmentation, grouping and shape; face and body and biometrics; adversarial learning and networks; computational photography; learning theory and optimization; applications, medical and robotics; computer vision and robot vision; pattern recognition and machine learning; multi-media and signal processing and interaction.

Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics PDF Author: Le Lu
Publisher: Springer Nature
ISBN: 3030139697
Category : Computers
Languages : en
Pages : 452

Get Book Here

Book Description
This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book’s chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval. The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.