Structure Characterization and Nanofabrication Using Atomic Force Microscopy

Structure Characterization and Nanofabrication Using Atomic Force Microscopy PDF Author: Jayne C. Garno
Publisher:
ISBN:
Category :
Languages : en
Pages : 398

Get Book Here

Book Description

Structure Characterization and Nanofabrication Using Atomic Force Microscopy

Structure Characterization and Nanofabrication Using Atomic Force Microscopy PDF Author: Jayne C. Garno
Publisher:
ISBN:
Category :
Languages : en
Pages : 398

Get Book Here

Book Description


Noncontact Atomic Force Microscopy

Noncontact Atomic Force Microscopy PDF Author: Seizo Morita
Publisher: Springer Science & Business Media
ISBN: 364201495X
Category : Technology & Engineering
Languages : en
Pages : 410

Get Book Here

Book Description
Since the original publication of Noncontact Atomic Force Microscopy in 2002, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. This second treatment deals with the following outstanding recent results obtained with atomic resolution since then: force spectroscopy and mapping with atomic resolution; tuning fork; atomic manipulation; magnetic exchange force microscopy; atomic and molecular imaging in liquids; and other new technologies. These results and technologies are now helping evolve NC-AFM toward practical tools for characterization and manipulation of individual atoms/molecules and nanostructures with atomic/subatomic resolution. Therefore, the book exemplifies how NC-AFM has become a crucial tool for the expanding fields of nanoscience and nanotechnology.

Noncontact Atomic Force Microscopy

Noncontact Atomic Force Microscopy PDF Author: Seizo Morita
Publisher: Springer
ISBN: 3319155881
Category : Science
Languages : en
Pages : 539

Get Book Here

Book Description
This book presents the latest developments in noncontact atomic force microscopy. It deals with the following outstanding functions and applications that have been obtained with atomic resolution after the publication of volume 2: (1) Pauli repulsive force imaging of molecular structure, (2) Applications of force spectroscopy and force mapping with atomic resolution, (3) Applications of tuning forks, (4) Applications of atomic/molecular manipulation, (5) Applications of magnetic exchange force microscopy, (6) Applications of atomic and molecular imaging in liquids, (7) Applications of combined AFM/STM with atomic resolution, and (8) New technologies in dynamic force microscopy. These results and technologies are now expanding the capacity of the NC-AFM with imaging functions on an atomic scale toward making them characterization and manipulation tools of individual atoms/molecules and nanostructures, with outstanding capability at the level of molecular, atomic, and subatomic resolution. Since the publication of vol. 2 of the book Noncontact Atomic Force Microscopy in 2009 the noncontact atomic force microscope, which can image even insulators with atomic resolution, has achieved remarkable progress. The NC-AFM is now becoming crucial for nanoscience and nanotechnology.

Structure Characterization and Nanofabrication on Surfaces Using Scanning Tunneling Microscopy

Structure Characterization and Nanofabrication on Surfaces Using Scanning Tunneling Microscopy PDF Author: Yile Qian
Publisher:
ISBN:
Category :
Languages : en
Pages : 216

Get Book Here

Book Description


Fundamentals and Application of Atomic Force Microscopy for Food Research

Fundamentals and Application of Atomic Force Microscopy for Food Research PDF Author: Jian Zhong
Publisher: Academic Press
ISBN: 0128241322
Category : Technology & Engineering
Languages : en
Pages : 385

Get Book Here

Book Description
Fundamentals and Application of Atomic Force Microscopy for Food Research explains how to get reliable AFM data and current application progress of AFM in different food substances. Sections focus on an Introduction to AFM for food research and Applications of AFM for different types of food substances. Edited by 3 experts in the field of nanotechnology and food science, this book reduces the difficulty of AFM application and shortens the learning time for new hands. Until now, no such book has systematically described the application of Atomic Force Microscopy (AFM) for food research. Many scientists in the field of food science and engineering need to evaluate their developed foods and food contact surfaces at nanoscale. However, there is a steep learning curve for new hands, hence the need for this comprehensive resource. - Describes the application of AFM for food research - Covers applications of AFM for different types of food substances - Addresses future uses and perspectives of AFM for the development of food nanotechnology

Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials

Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials PDF Author: Paula M. Vilarinho
Publisher: Springer Science & Business Media
ISBN: 1402030193
Category : Science
Languages : en
Pages : 503

Get Book Here

Book Description
As the characteristic dimensions of electronic devices continue to shrink, the ability to characterize their electronic properties at the nanometer scale has come to be of outstanding importance. In this sense, Scanning Probe Microscopy (SPM) is becoming an indispensable tool, playing a key role in nanoscience and nanotechnology. SPM is opening new opportunities to measure semiconductor electronic properties with unprecedented spatial resolution. SPM is being successfully applied for nanoscale characterization of ferroelectric thin films. In the area of functional molecular materials it is being used as a probe to contact molecular structures in order to characterize their electrical properties, as a manipulator to assemble nanoparticles and nanotubes into simple devices, and as a tool to pattern molecular nanostructures. This book provides in-depth information on new and emerging applications of SPM to the field of materials science, namely in the areas of characterisation, device application and nanofabrication of functional materials. Starting with the general properties of functional materials the authors present an updated overview of the fundamentals of Scanning Probe Techniques and the application of SPM techniques to the characterization of specified functional materials such as piezoelectric and ferroelectric and to the fabrication of some nano electronic devices. Its uniqueness is in the combination of the fundamental nanoscale research with the progress in fabrication of realistic nanodevices. By bringing together the contribution of leading researchers from the materials science and SPM communities, relevant information is conveyed that allows researchers to learn more about the actual developments in SPM applied to functional materials. This book will contribute to the continuous education and development in the field of nanotechnology.

Surface Science Tools for Nanomaterials Characterization

Surface Science Tools for Nanomaterials Characterization PDF Author: Challa S.S.R. Kumar
Publisher: Springer
ISBN: 3662445514
Category : Science
Languages : en
Pages : 653

Get Book Here

Book Description
Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

Nanofabrication and Its Application in Atomic Force Microscopy (AFM)

Nanofabrication and Its Application in Atomic Force Microscopy (AFM) PDF Author: Ripon Dey
Publisher:
ISBN:
Category : Lithography, Electron beam
Languages : en
Pages : 170

Get Book Here

Book Description
This thesis is focused on nanofabrication and its application in atomic force microscopy (AFM). The contribution of this thesis is thus the development, investigation and characterization of novel nanofabrication technique (Part I); and application of nanofabrication in manufacturing the high aspect ratio AFM tips (Part II). In the first part of the thesis, firstly, unlike optical and mechanical lithography such as nanoimprint lithography, the throughput of EBL is very low, which demands for highly sensitive resists. We studied the dependency of e-beam exposure properties on molecular weight of the negative EBL resist polystyrene, and very high sensitivity of 1 [mu]C/cm2 was obtained for 900 kg/mol when exposed with electron beam of 2 keV. We also demonstrated that the exposure property of high PDI (polydispersity index) polystyrene resembles that of a monodisperse (PDI 1.06) polystyrene with similar number averaged molecular weight ("Mn" )́−, which indicates that it is ("Mn" )− rather than ("Mw" )− (weight averaged molecular weight) that dominates the exposure properties of polystyrene resist. Secondly, lift-off using negative resist is very challenging because the resist profile is typically positively tapered due to electron forward scattering, and upon exposure negative resist is cross-linked and thus insoluble in solvents. Here we demonstrated that low energy exposure could circumvent both issues simultaneously, and we achieved liftoff of Cr with polystyrene resist using a solvent xylene. Lastly, since low energy electrons are mostly stopped inside the resist layer, radiation damage to the sub-layer is greatly reduced. Thirdly, an electron beam resist is usually coated by conventional coating methods such as spin-coating, but this cannot be reliably applied on irregular surfaces. We here reported a monolayer resist can be grafted on nonflat surface. As a proof of concept of patterning on irregular surfaces, we chose PMMA mono-layer "brush" and grafted it on irregular surfaces by thermal treatment which accelerates a chemical reaction between PMMA molecules and hydroxyl group on substrate. We achieved nanofabrication of 30 nm resolution on an AFM cantilever. Fourthly, due to the lack of feedback, conventional electron beam lithography (EBL) is a “blind” open-loop process where the exposed pattern is examined only after ex-situ resist development, which is too late for any improvement. We reported that self-developing resist nitrocellulose, for which pattern shows up right after exposure without ex-situ development, can be used as in-situ feedback on the e-beam distortion and enlargement. Once the beam was optimized using nitrocellulose resist, under the same optimal beam condition, we exposed in the common resist PMMA. We achieved ~80 nm resolution across the entire large writing field of 1 mm2, as compared to 210 nm without the beam optimization process. We also reported that self-developing resist can provide in-situ feedback for writing field alignment accuracy, which in turn can be used to optimize the alignment. In the second part of the thesis, we demonstrated the batch fabrication of high aspect ratio (HAR) AFM tips. In order to obtain high quality and faithful images in AFM, very high aspect ratio tips are required in order to reach to the bottom of narrow and deep trenches/holes. But these HAR tips are extremely difficult to make and consequently very expensive. Currently all the commercially available HAR AFM tips are fabricated in a slow, costly (~5-20 that of regular AFM tips) and serial manner (one by one). We here developed a method to batch fabricate HAR AFM tips by forming a hard metal etching mask just on the apex of the pyramid tip followed by silicon dry etching to achieve the HAR pillar right below the metal island mask. Since it is a batch and lithography-free process, it has much higher throughput and much lower manufacturing cost per tip. This technique was first successfully applied on large-area pyramid arrays and then transferred to the commercial regular AFM tips, and has demonstrated the uniformity, reproducibility and yield of those HAR tips. The tip apex diameter and tip pillar height are controllable by tuning metal thickness and silicon dry etching time respectively. Finally, we demonstrated that the HAR tips fabricated using our technique gave a better imaging quality than the commercial regular tips.

Atomic Force Microscopy

Atomic Force Microscopy PDF Author: Peter Eaton
Publisher: OUP Oxford
ISBN: 0191576670
Category : Science
Languages : en
Pages : 256

Get Book Here

Book Description
Atomic force microscopy (AFM) is an amazing technique that allies a versatile methodology (that allows measurement of samples in liquid, vacuum or air) to imaging with unprecedented resolution. But it goes one step further than conventional microscopic techniques; it allows us to make measurements of magnetic, electrical or mechanical properties of the widest possible range of samples, with nanometre resolution. This book will demystify AFM for the reader, making it easy to understand, and to use. It is written by authors who together have more than 30 years experience in the design, construction, and use of AFMs and will explain why the microscopes are made the way they are, how they should be used, what data they can produce, and what can be done with the data. Illustrative examples from the physical sciences, materials science, life sciences, nanotechnology and industry demonstrate the different capabilities of the technique.

Scanning Probe Microscopy of Functional Materials

Scanning Probe Microscopy of Functional Materials PDF Author: Sergei V. Kalinin
Publisher: Springer Science & Business Media
ISBN: 144197167X
Category : Technology & Engineering
Languages : en
Pages : 563

Get Book Here

Book Description
The goal of this book is to provide a general overview of the rapidly developing field of novel scanning probe microscopy (SPM) techniques for characterization of a wide range of functional materials, including complex oxides, biopolymers, and semiconductors. Many recent advances in condensed matter physics and materials science, including transport mechanisms in carbon nanostructures and the role of disorder on high temperature superconductivity, would have been impossible without SPM. The unique aspect of SPM is its potential for imaging functional properties of materials as opposed to structural characterization by electron microscopy. Examples include electrical transport and magnetic, optical, and electromechanical properties. By bringing together critical reviews by leading researchers on the application of SPM to to the nanoscale characterization of functional materials properties, this book provides insight into fundamental and technological advances and future trends in key areas of nanoscience and nanotechnology.