Bridging the Gap Between Graph Edit Distance and Kernel Machines

Bridging the Gap Between Graph Edit Distance and Kernel Machines PDF Author: Michel Neuhaus
Publisher: World Scientific
ISBN: 9812708170
Category : Computers
Languages : en
Pages : 245

Get Book Here

Book Description
In graph-based structural pattern recognition, the idea is to transform patterns into graphs and perform the analysis and recognition of patterns in the graph domain ? commonly referred to as graph matching. A large number of methods for graph matching have been proposed. Graph edit distance, for instance, defines the dissimilarity of two graphs by the amount of distortion that is needed to transform one graph into the other and is considered one of the most flexible methods for error-tolerant graph matching.This book focuses on graph kernel functions that are highly tolerant towards structural errors. The basic idea is to incorporate concepts from graph edit distance into kernel functions, thus combining the flexibility of edit distance-based graph matching with the power of kernel machines for pattern recognition. The authors introduce a collection of novel graph kernels related to edit distance, including diffusion kernels, convolution kernels, and random walk kernels. From an experimental evaluation of a semi-artificial line drawing data set and four real-world data sets consisting of pictures, microscopic images, fingerprints, and molecules, the authors demonstrate that some of the kernel functions in conjunction with support vector machines significantly outperform traditional edit distance-based nearest-neighbor classifiers, both in terms of classification accuracy and running time.

Bridging the Gap Between Graph Edit Distance and Kernel Machines

Bridging the Gap Between Graph Edit Distance and Kernel Machines PDF Author: Michel Neuhaus
Publisher: World Scientific
ISBN: 9812708170
Category : Computers
Languages : en
Pages : 245

Get Book Here

Book Description
In graph-based structural pattern recognition, the idea is to transform patterns into graphs and perform the analysis and recognition of patterns in the graph domain ? commonly referred to as graph matching. A large number of methods for graph matching have been proposed. Graph edit distance, for instance, defines the dissimilarity of two graphs by the amount of distortion that is needed to transform one graph into the other and is considered one of the most flexible methods for error-tolerant graph matching.This book focuses on graph kernel functions that are highly tolerant towards structural errors. The basic idea is to incorporate concepts from graph edit distance into kernel functions, thus combining the flexibility of edit distance-based graph matching with the power of kernel machines for pattern recognition. The authors introduce a collection of novel graph kernels related to edit distance, including diffusion kernels, convolution kernels, and random walk kernels. From an experimental evaluation of a semi-artificial line drawing data set and four real-world data sets consisting of pictures, microscopic images, fingerprints, and molecules, the authors demonstrate that some of the kernel functions in conjunction with support vector machines significantly outperform traditional edit distance-based nearest-neighbor classifiers, both in terms of classification accuracy and running time.

Graph-Based Representations in Pattern Recognition

Graph-Based Representations in Pattern Recognition PDF Author: Xiaoyi Jiang
Publisher: Springer
ISBN: 3642208444
Category : Computers
Languages : en
Pages : 355

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 8th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2011, held in Münster, Germany, in May 2011. The 34 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on graph-based representation and characterization, graph matching, classification, and querying, graph-based learning, graph-based segmentation, and applications.

Structural Pattern Recognition with Graph Edit Distance

Structural Pattern Recognition with Graph Edit Distance PDF Author: Kaspar Riesen
Publisher: Springer
ISBN: 9783319801018
Category : Computers
Languages : en
Pages : 158

Get Book Here

Book Description
This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED). The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm; describes a reformulation of GED to a quadratic assignment problem; illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem; reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework; examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time; includes appendices listing the datasets employed for the experimental evaluations discussed in the book.

Syntactic and Structural Pattern Recognition

Syntactic and Structural Pattern Recognition PDF Author: Horst Bunke
Publisher: World Scientific
ISBN: 9789971505660
Category : Computers
Languages : en
Pages : 568

Get Book Here

Book Description
This book is currently the only one on this subject containing both introductory material and advanced recent research results. It presents, at one end, fundamental concepts and notations developed in syntactic and structural pattern recognition and at the other, reports on the current state of the art with respect to both methodology and applications. In particular, it includes artificial intelligence related techniques, which are likely to become very important in future pattern recognition.The book consists of individual chapters written by different authors. The chapters are grouped into broader subject areas like “Syntactic Representation and Parsing”, “Structural Representation and Matching”, “Learning”, etc. Each chapter is a self-contained presentation of one particular topic. In order to keep the original flavor of each contribution, no efforts were undertaken to unify the different chapters with respect to notation. Naturally, the self-containedness of the individual chapters results in some redundancy. However, we believe that this handicap is compensated by the fact that each contribution can be read individually without prior study of the preceding chapters. A unification of the spectrum of material covered by the individual chapters is provided by the subject and author index included at the end of the book.

Graph-Based Representations in Pattern Recognition

Graph-Based Representations in Pattern Recognition PDF Author: Francisco Escolano
Publisher: Springer Science & Business Media
ISBN: 354072902X
Category : Computers
Languages : en
Pages : 427

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 6th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2007, held in Alicante, Spain in June 2007. The 23 revised full papers and 14 revised poster papers presented were carefully reviewed and selected from 54 submissions. The papers are organized in topical sections on matching, distances and measures, graph-based segmentation and image processing, graph-based clustering, graph representations, pyramids, combinatorial maps and homologies, as well as graph clustering, embedding and learning.

Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications

Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications PDF Author: Robert P W Duin
Publisher: World Scientific
ISBN: 9814479144
Category : Computers
Languages : en
Pages : 634

Get Book Here

Book Description
This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.

Pattern Recognition and String Matching

Pattern Recognition and String Matching PDF Author: Dechang Chen
Publisher: Springer Science & Business Media
ISBN: 9781402009532
Category : Mathematics
Languages : en
Pages : 782

Get Book Here

Book Description
The research and development of pattern recognition have proven to be of importance in science, technology, and human activity. Many useful concepts and tools from different disciplines have been employed in pattern recognition. Among them is string matching, which receives much theoretical and practical attention. String matching is also an important topic in combinatorial optimization. This book is devoted to recent advances in pattern recognition and string matching. It consists of twenty eight chapters written by different authors, addressing a broad range of topics such as those from classifica tion, matching, mining, feature selection, and applications. Each chapter is self-contained, and presents either novel methodological approaches or applications of existing theories and techniques. The aim, intent, and motivation for publishing this book is to pro vide a reference tool for the increasing number of readers who depend upon pattern recognition or string matching in some way. This includes students and professionals in computer science, mathematics, statistics, and electrical engineering. We wish to thank all the authors for their valuable efforts, which made this book a reality. Thanks also go to all reviewers who gave generously of their time and expertise.

Intelligent Systems and Interfaces

Intelligent Systems and Interfaces PDF Author: Horia-Nicolai Teodorescu
Publisher: Springer Science & Business Media
ISBN: 9780792377634
Category : Computers
Languages : en
Pages : 488

Get Book Here

Book Description
This volume offers comprehensive coverage of intelligent systems, including fundamental aspects, software-, sensors-, and hardware-related issues. Moreover, the contributors to this volume provide, beyond a systematic overview of intelligent interfaces and systems, deep, practical knowledge in building and using intelligent systems in various applications. Special emphasis is placed on specific aspects and requirements in applications.

Managing and Mining Graph Data

Managing and Mining Graph Data PDF Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 1441960457
Category : Computers
Languages : en
Pages : 623

Get Book Here

Book Description
Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.

Structural, Syntactic, and Statistical Pattern Recognition

Structural, Syntactic, and Statistical Pattern Recognition PDF Author: Niels da Vitoria Lobo
Publisher: Springer Science & Business Media
ISBN: 3540896880
Category : Computers
Languages : en
Pages : 1029

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 12th International Workshop on Structural and Syntactic Pattern Recognition, SSPR 2008 and the 7th International Workshop on Statistical Techniques in Pattern Recognition, SPR 2008, held jointly in Orlando, FL, USA, in December 2008 as a satellite event of the 19th International Conference of Pattern Recognition, ICPR 2008. The 56 revised full papers and 42 revised poster papers presented together with the abstracts of 4 invited papers were carefully reviewed and selected from 175 submissions. The papers are organized in topical sections on graph-based methods, probabilistic and stochastic structural models for PR, image and video analysis, shape analysis, kernel methods, recognition and classification, applications, ensemble methods, feature selection, density estimation and clustering, computer vision and biometrics, pattern recognition and applications, pattern recognition, as well as feature selection and clustering.