Sequence — Evolution — Function

Sequence — Evolution — Function PDF Author: Eugene V. Koonin
Publisher: Springer Science & Business Media
ISBN: 1475737831
Category : Science
Languages : en
Pages : 482

Get Book Here

Book Description
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.

Sequence — Evolution — Function

Sequence — Evolution — Function PDF Author: Eugene V. Koonin
Publisher: Springer Science & Business Media
ISBN: 1475737831
Category : Science
Languages : en
Pages : 482

Get Book Here

Book Description
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.

Structural Approaches to Sequence Evolution

Structural Approaches to Sequence Evolution PDF Author: Ugo Bastolla
Publisher: Springer Science & Business Media
ISBN: 3540353062
Category : Science
Languages : en
Pages : 375

Get Book Here

Book Description
Recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists.

Biological Sequence Analysis

Biological Sequence Analysis PDF Author: Richard Durbin
Publisher: Cambridge University Press
ISBN: 113945739X
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.

Computational Methods in Protein Evolution

Computational Methods in Protein Evolution PDF Author: Tobias Sikosek
Publisher: Humana
ISBN: 9781493987351
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
This volume presents a diverse collection of methodologies used to study various problems at the protein sequence and structure level. The chapters in this book look at issues ranging from broad concepts like protein space to specifics like antibody modeling. Topics include point mutations, gene duplication, de novo emergence of new genes, pairwise correlated mutations, ancestral protein reconstruction, homology modelling, protein stability and dynamics, and protein-protein interactions. The book also covers a wide range of computational approaches, including sequence and structure alignments, phylogenies, physics-based and mathematical approaches, machine learning, and more. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and prerequisites, step-by-step, readily reproducible computational protocols (using command line or graphical user interfaces, sometimes including computer code), and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Computational Methods in Protein Evolution is a valuable resource that offers useful workflows and techniques that will help both novice and expert researchers working with proteins computationally.

Bioinformatics: Sequences, Structures, Phylogeny

Bioinformatics: Sequences, Structures, Phylogeny PDF Author: Asheesh Shanker
Publisher: Springer
ISBN: 9811315620
Category : Science
Languages : en
Pages : 402

Get Book Here

Book Description
This book provides a comprehensive overview of the concepts and approaches used for sequence, structure, and phylogenetic analysis. Starting with an introduction to the subject and intellectual property protection for bioinformatics, it guides readers through the latest sequencing technologies, sequence analysis, genomic variations, metagenomics, epigenomics, molecular evolution and phylogenetics, structural bioinformatics, protein folding, structure analysis and validation, drug discovery, reverse vaccinology, machine learning, application of R programming in biological data analysis, and the use of Linux in handling large data files.

Probability Models for DNA Sequence Evolution

Probability Models for DNA Sequence Evolution PDF Author: Rick Durrett
Publisher: Springer Science & Business Media
ISBN: 1475762852
Category : Mathematics
Languages : en
Pages : 246

Get Book Here

Book Description
"What underlying forces are responsible for the observed patterns of variability, given a collection of DNA sequences?" In approaching this question a number of probability models are introduced and anyalyzed.Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies that illustrate the use of these results.

Protein Families

Protein Families PDF Author: Christine A. Orengo
Publisher: John Wiley & Sons
ISBN: 0470624221
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
New insights into the evolution and nature of proteins Exploring several distinct approaches, this book describes the methods for comparing protein sequences and protein structures in order to identify homologous relationships and classify proteins and protein domains into evolutionary families. Readers will discover the common features as well as the key philosophical differences underlying the major protein classification systems, including Pfam, Panther, SCOP, and CATH. Moreover, they'll discover how these systems can be used to understand the evolution of protein families as well as understand and predict the degree to which structural and functional information are shared between relatives in a protein family. Edited and authored by leading international experts, Protein Families offers new insights into protein families that are important to medical research as well as protein families that help us understand biological systems and key biological processes such as cell signaling and the immune response. The book is divided into three sections: Section I: Concepts Underlying Protein Family Classification reviews the major strategies for identifying homologous proteins and classifying them into families. Section II: In-Depth Reviews of Protein Families focuses on some fascinating super protein families for which we have substantial amounts of sequence, structural and functional data, making it possible to trace the emergence of functionally diverse relatives. Section III: Review of Protein Families in Important Biological Systems examines protein families associated with a particular biological theme, such as the cytoskeleton. All chapters are extensively illustrated, including depictions of evolutionary relationships. References at the end of each chapter guide readers to original research papers and reviews in the field. Covering protein family classification systems alongside detailed descriptions of select protein families, this book offers biochemists, molecular biologists, protein scientists, structural biologists, and bioinformaticians new insight into the evolution and nature of proteins.

Molecular Evolution

Molecular Evolution PDF Author: Roderick D.M. Page
Publisher: John Wiley & Sons
ISBN: 1444313363
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
The study of evolution at the molecular level has given the subject of evolutionary biology a new significance. Phylogenetic 'trees' of gene sequences are a powerful tool for recovering evolutionary relationships among species, and can be used to answer a broad range of evolutionary and ecological questions. They are also beginning to permeate the medical sciences. In this book, the authors approach the study of molecular evolution with the phylogenetic tree as a central metaphor. This will equip students and professionals with the ability to see both the evolutionary relevance of molecular data, and the significance evolutionary theory has for molecular studies. The book is accessible yet sufficiently detailed and explicit so that the student can learn the mechanics of the procedures discussed. The book is intended for senior undergraduate and graduate students taking courses in molecular evolution/phylogenetic reconstruction. It will also be a useful supplement for students taking wider courses in evolution, as well as a valuable resource for professionals. First student textbook of phylogenetic reconstruction which uses the tree as a central metaphor of evolution. Chapter summaries and annotated suggestions for further reading. Worked examples facilitate understanding of some of the more complex issues. Emphasis on clarity and accessibility.

Evolutionary Genomics

Evolutionary Genomics PDF Author: Maria Anisimova
Publisher: Humana Press
ISBN: 9781617795848
Category : Medical
Languages : en
Pages : 556

Get Book Here

Book Description
Together with early theoretical work in population genetics, the debate on sources of genetic makeup initiated by proponents of the neutral theory made a solid contribution to the spectacular growth in statistical methodologies for molecular evolution. Evolutionary Genomics: Statistical and Computational Methods is intended to bring together the more recent developments in the statistical methodology and the challenges that followed as a result of rapidly improving sequencing technologies. Presented by top scientists from a variety of disciplines, the collection includes a wide spectrum of articles encompassing theoretical works and hands-on tutorials, as well as many reviews with key biological insight. Volume 2 begins with phylogenomics and continues with in-depth coverage of natural selection, recombination, and genomic innovation. The remaining chapters treat topics of more recent interest, including population genomics, -omics studies, and computational issues related to the handling of large-scale genomic data. Written in the highly successful Methods in Molecular BiologyTM series format, this work provides the kind of advice on methodology and implementation that is crucial for getting ahead in genomic data analyses. Comprehensive and cutting-edge, Evolutionary Genomics: Statistical and Computational Methods is a treasure chest of state-of the-art methods to study genomic and omics data, certain to inspire both young and experienced readers to join the interdisciplinary field of evolutionary genomics.

Ancestral Sequence Reconstruction

Ancestral Sequence Reconstruction PDF Author: David A Liberles
Publisher: Oxford University Press
ISBN: 0199299188
Category : Science
Languages : en
Pages : 267

Get Book Here

Book Description
Ancestral sequence reconstruction is a technique of growing importance in molecular evolutionary biology and comparative genomics. As a powerful tool for testing evolutionary and ecological hypotheses, as well as uncovering the link between sequence and molecular phenotype, there are potential applications in a range of fields.Ancestral Sequence Reconstruction starts with a historical overview of the field, before discussing the potential applications in drug discovery and the pharmaceutical industry. This is followed by a section on computational methodology, which provides a detailed discussion of the available methods for reconstructing ancestral sequences (including their advantages, disadvantages, and potential pitfalls). Purely computational applications of the technique are then covered, including wholeproteome reconstruction. Further chapters provide a detailed discussion on taking computationally reconstructed sequences and synthesizing them in the laboratory. The book concludes with a description of the scientific questions where experimental ancestral sequence reconstruction has been utilized toprovide insights and inform future research.This research level text provides a first synthesis of the theories, methodologies and applications associated with ancestral sequence recognition, while simultaneously addressing many of the hot topics in the field. It will be of interest and use to both graduate students and researchers in the fields of molecular biology, molecular evolution, and evolutionary bioinformatics.