Structural and Magnetic Phase Transitions in [math][mrow][msub][mi]Ca[/mi][mrow][mn]0.73[/mn][/mrow][/msub][msub][mi]Le[/mi][mrow][mn]0.27[/mn][/mrow][/msub][msub][mi]FeAs[/mi][mn]2[/mn][/msub][/mrow][/math] with Electron-overdoped FeAs Layers

Structural and Magnetic Phase Transitions in [math][mrow][msub][mi]Ca[/mi][mrow][mn]0.73[/mn][/mrow][/msub][msub][mi]Le[/mi][mrow][mn]0.27[/mn][/mrow][/msub][msub][mi]FeAs[/mi][mn]2[/mn][/msub][/mrow][/math] with Electron-overdoped FeAs Layers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We report a study of the Ca0.73La0.27FeAs2 single crystals. We unravel a monoclinic to triclinic phase transition at 58 K, and a paramagnetic to stripe antiferromagnetic (AFM) phase transition at 54 K, below which spins order 45° away from the stripe direction. Furthermore, we demonstrate this material is substantially structurally untwinned at ambient pressure with the formation of spin rotation walls (S-walls). Lastly, in addition to the central-hole and corner-electron Fermi pockets usually appearing in FPS, angle-resolved photoemission (ARPES) measurements resolve a Fermiology where an extra electron pocket of mainly As chain character exists at the Brillouin zone edge.

Structural and Magnetic Phase Transitions in [math][mrow][msub][mi]Ca[/mi][mrow][mn]0.73[/mn][/mrow][/msub][msub][mi]Le[/mi][mrow][mn]0.27[/mn][/mrow][/msub][msub][mi]FeAs[/mi][mn]2[/mn][/msub][/mrow][/math] with Electron-overdoped FeAs Layers

Structural and Magnetic Phase Transitions in [math][mrow][msub][mi]Ca[/mi][mrow][mn]0.73[/mn][/mrow][/msub][msub][mi]Le[/mi][mrow][mn]0.27[/mn][/mrow][/msub][msub][mi]FeAs[/mi][mn]2[/mn][/msub][/mrow][/math] with Electron-overdoped FeAs Layers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We report a study of the Ca0.73La0.27FeAs2 single crystals. We unravel a monoclinic to triclinic phase transition at 58 K, and a paramagnetic to stripe antiferromagnetic (AFM) phase transition at 54 K, below which spins order 45° away from the stripe direction. Furthermore, we demonstrate this material is substantially structurally untwinned at ambient pressure with the formation of spin rotation walls (S-walls). Lastly, in addition to the central-hole and corner-electron Fermi pockets usually appearing in FPS, angle-resolved photoemission (ARPES) measurements resolve a Fermiology where an extra electron pocket of mainly As chain character exists at the Brillouin zone edge.

Structural and Magnetic Phase Transitions in [math][mrow][msub][mtext]EuTi[/mtext][mrow][mn]1[/mn][mo]-[/mo][mi]x[/mi][/mrow][/msub][msub][mtext]Nb[/mtext][mi]x[/mi][/msub][msub][mtext]O[/mtext][mn]3[/mn][/msub][/mrow][/math].

Structural and Magnetic Phase Transitions in [math][mrow][msub][mtext]EuTi[/mtext][mrow][mn]1[/mn][mo]-[/mo][mi]x[/mi][/mrow][/msub][msub][mtext]Nb[/mtext][mi]x[/mi][/msub][msub][mtext]O[/mtext][mn]3[/mn][/msub][/mrow][/math]. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Here, we investigate the structural and magnetic phase transitions in EuTi1-xNbxO3 (0≤x≤0.3) with synchrotron powder x-ray diffraction, resonant ultrasound spectroscopy, and magnetization measurements. Upon Nb doping, the Pm$\bar{3}$m↔I4/mcm structural transition shifts to higher temperatures and the room temperature lattice parameter increases while the magnitude of the octahedral tilting decreases. In addition, Nb substitution for Ti destabilizes the antiferromagnetic ground state of the parent compound and long-range ferromagnetic order is observed in the samples with x≥0.1. Moreover, the structural transition in pure and doped compounds is marked by a dramatic steplike softening of the elastic moduli near TS, which resembles that of SrTiO3 and can be adequately modeled using the Landau free energy model employing the same coupling between strain and octahedral tilting order parameter as previously used to model SrTiO3.

Magnetic Structure of [math][mrow][msub][mi]Yb[/mi][mn]2[/mn][/msub][msub][mi]Pt[/mi][mn]2[/mn][/msub][mi]Pb[/mi][/mrow][/math]

Magnetic Structure of [math][mrow][msub][mi]Yb[/mi][mn]2[/mn][/msub][msub][mi]Pt[/mi][mn]2[/mn][/msub][mi]Pb[/mi][/mrow][/math] PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Evolution of the Magnetic and Structural Properties of [math][mrow][msub][mi]Fe[/mi][mrow][mn]1[/mn][mo]-[/mo][mi]x[/mi][/mrow][/msub][msub][mi]Co[/mi][mi]x[/mi][/msub][msub][mi Mathvariant

Evolution of the Magnetic and Structural Properties of [math][mrow][msub][mi]Fe[/mi][mrow][mn]1[/mn][mo]-[/mo][mi]x[/mi][/mrow][/msub][msub][mi]Co[/mi][mi]x[/mi][/msub][msub][mi Mathvariant PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The magnetic and structural properties of single-crystal Fe1-xCoxV2O4 samples have been investigated by performing specific heat, susceptibility, neutron diffraction, and x-ray diffraction measurements. As the orbital-active Fe2+ ions with larger ionic size are gradually substituted by the orbital-inactive Co2+ ions with smaller ionic size, the system approaches the itinerant electron limit with decreasing V-V distance. Then, various factors such as the Jahn-Teller distortion and the spin-orbital coupling of the Fe2+ ions on the A sites and the orbital ordering and electronic itinerancy of the V3+ ions on the B sites compete with each other to produce a complex magnetic and structural phase diagram. Finally, this phase diagram is compared to those of Fe1-xMnxV2O4 and Mn1-xCoxV2O4 to emphasize several distinct features.

Two Spatially Separated Phases in Semiconducting [math][mrow][msub][mi]Rb[/mi][mrow][mn]0.8[/mn][/mrow][/msub][msub][mi]Fe[/mi][mrow][mn]1.5[/mn][/mrow][/msub][msub][mi Mathvariant

Two Spatially Separated Phases in Semiconducting [math][mrow][msub][mi]Rb[/mi][mrow][mn]0.8[/mn][/mrow][/msub][msub][mi]Fe[/mi][mrow][mn]1.5[/mn][/mrow][/msub][msub][mi Mathvariant PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We report neutron scattering and transport measurements on semiconducting Rb0.8Fe1.5S2, a compound isostructural and isoelectronic to the well-studied A0.8FeySe2(A = K, Rb, Cs, Tl/K) superconducting systems. Both resistivity and DC susceptibility measurements reveal a magnetic phase transition at T = 275 K. Neutron diffraction studies show that the 275 K transition originates from a phase with rhombic iron vacancy order which exhibits an in-plane stripe antiferromagnetic ordering below 275 K. In addition, the stripe antiferromagnetic phase interdigitates mesoscopically with an ubiquitous phase with √5 x√5 iron vacancy order. This phase has a magnetic transition at TN = 425 K and an iron vacancy order-disorder transition at TS = 600 K. These two different structural phases are closely similar to those observed in the isomorphous Se materials. Based on the close similarities of the in-plane antiferromagnetic structures, moments sizes, and ordering temperatures in semiconducting Rb0.8Fe1.5S2 and K0.81Fe1.58Se2, we argue that the in-plane antiferromagnetic order arises from strong coupling between local moments. Superconductivity, previously observed in the A0.8FeySe2− zSz system, is absent in A0.8Fe1.5S2, which has a semiconducting ground state. We discuss the implied relationship between stripe and block antiferromagnetism and superconductivity in these materials as well as a strategy for further investigation.